Mizutaka S, Mori K, Hasegawa T. Synergistic epidemic spreading in correlated networks.
Phys Rev E 2022;
106:034305. [PMID:
36266882 DOI:
10.1103/physreve.106.034305]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network with tunable degree correlation, we identify a discontinuous transition that is independent of the degree correlation strength unless the synergy is absent or extremely weak. Regardless of synergy (absent or present), a positive and negative degree correlation in the model reduces and raises the epidemic threshold, respectively. For networks with a strongly positive degree correlation, the mean-field treatment predicts the emergence of two discontinuous jumps in the steady-state infected density. To test the mean-field treatment, we provide approximate master equations of the present model. We quantitatively confirm that the approximate master equations agree with not only all qualitative predictions of the mean-field treatment but also corresponding Monte Carlo simulations.
Collapse