1
|
Zhao Y, Hu HJ, Zhou QQ, Qiu ZC, Xue L, Xu SL, Zhou Q, Malomed BA. Three-dimensional solitons in Rydberg-dressed cold atomic gases with spin-orbit coupling. Sci Rep 2023; 13:18079. [PMID: 37872222 PMCID: PMC10593778 DOI: 10.1038/s41598-023-44745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
We present numerical results for three-dimensional (3D) solitons with symmetries of the semi-vortex (SV) and mixed-mode (MM) types, which can be created in spinor Bose-Einstein condensates of Rydberg atoms under the action of the spin-orbit coupling (SOC). By means of systematic numerical computations, we demonstrate that the interplay of SOC and long-range spherically symmetric Rydberg interactions stabilize the 3D solitons, improving their resistance to collapse. We find how the stability range depends on the strengths of the SOC and Rydberg interactions and the soft-core atomic radius.
Collapse
Affiliation(s)
- Yuan Zhao
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Heng-Jie Hu
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning, 437100, China
| | - Qian-Qian Zhou
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning, 437100, China
| | - Zhang-Cai Qiu
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning, 437100, China
| | - Li Xue
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning, 437100, China
| | - Si-Liu Xu
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China.
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Qin Zhou
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, 430200, China
| | - Boris A Malomed
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv, P.O.B. 39040, Tel Aviv, Israel
- Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
| |
Collapse
|
2
|
Zhang Y, Hang C, Huang G. Matter-wave solitons in an array of spin-orbit-coupled Bose-Einstein condensates. Phys Rev E 2023; 108:014208. [PMID: 37583229 DOI: 10.1103/physreve.108.014208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
We investigate matter-wave solitons in a binary Bose-Einstein condensate (BEC) with spin-orbit (SO) coupling, loaded in a one-dimensional (1D) deep optical lattice and a three-dimensional anisotropic magnetic trap, which creates an array of elongated sub-BECs with transverse tunneling. We show that the system supports 1D continuous and discrete solitons localized in the longitudinal (along the array) and the transverse (across the array) directions, respectively. In addition, such solitons are always unpolarized in the zero-momentum state but polarized in finite-momentum states. We also show that the system supports stable two-dimensional semidiscrete solitons, including single- and multiple-peaked ones, localized in both the longitudinal and transverse directions. Stability diagrams for single-peaked semidiscrete solitons in different parameter spaces are identified. The results reported here are beneficial not only for understanding the physical property of SO-coupled BECs but also for generating new types of matter-wave solitons.
Collapse
Affiliation(s)
- Yanchao Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Chao Hang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- NYU-ECNU Institute of Physics, New York University at Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guoxiang Huang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- NYU-ECNU Institute of Physics, New York University at Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Banger P, Kumar RK, Roy A, Gautam S. Effective potentials in a rotating spin-orbit-coupled spin-1 spinor condensate. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:045401. [PMID: 36541536 DOI: 10.1088/1361-648x/aca7a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
We theoretically study the stationary-state vortex lattice configurations of rotating spin-orbit (SO)- and coherently-coupled spin-1 Bose-Einstein condensates (BECs) trapped in quasi-two-dimensional harmonic potentials. The combined effects of rotation, SO and coherent couplings are analyzed systematically from the single-particle perspective. Through the single-particle Hamiltonian, which is exactly solvable for one-dimensional coupling, we illustrate that a boson in these rotating SO- and coherently-coupled condensates are subjected to effective toroidal, symmetric double-well, or asymmetric double-well potentials under specific coupling and rotation strengths. In the presence of mean-field interactions, using the coupled Gross-Pitaevskii formalism at moderate to high rotation frequencies, the analytically obtained effective potential minima and the numerically obtained coarse-grained density maxima position are in excellent agreement. On rapid rotation, we further find that the spin-expectation per particle of an antiferromagnetic spin-1 BEC approaches unity indicating a similarity in the response with ferromagnetic SO-coupled condensates.
Collapse
Affiliation(s)
- Paramjeet Banger
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - R Kishor Kumar
- Department of Physics, Centre for Quantum Science, and Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin 9054, New Zealand
| | - Arko Roy
- School of Physical Sciences, Indian Institute of Technology Mandi, Mandi 175075 (H.P.), India
| | - Sandeep Gautam
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
4
|
Luo Z, Liu Y, Li Y, Batle J, Malomed BA. Stability limits for modes held in alternating trapping-expulsive potentials. Phys Rev E 2022; 106:014201. [PMID: 35974589 DOI: 10.1103/physreve.106.014201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
We elaborate a scheme of trapping-expulsion management (TEM), in the form of the quadratic potential periodically switching between confinement and expulsion, as a means of stabilization of two-dimensional dynamical states against the backdrop of the critical collapse driven by the cubic self-attraction with strength g. The TEM scheme may be implemented, as spatially or temporally periodic modulations, in optics or BEC, respectively. The consideration is carried out by dint of numerical simulations and variational approximation (VA). In terms of the VA, the dynamics amounts to a nonlinear Ermakov equation, which, in turn, is tantamount to a linear Mathieu equation. Stability boundaries are found as functions of g and parameters of the periodic modulation of the trapping potential. Below the usual collapse threshold, which is known, in the numerical form, as g<g_{c}^{(num)}≈5.85 (in the standard notation), the stability is limited by the onset of the parametric resonance. This stability limit, including the setup with the self-repulsive sign of the cubic term (g<0), is accurately predicted by the VA. At g>g_{c}^{(num)}, the collapse threshold is found with the help of full numerical simulations. The relative increase of g_{c} above g_{c}^{(num)} is ≈1.5%. It is a meaningful result, even if its size is small, because the collapse threshold is a universal constant which is difficult to change.
Collapse
Affiliation(s)
- Zhihuan Luo
- Department of Applied Physics, South China Agricultural University, Guangzhou 510642, China
| | - Yan Liu
- Department of Applied Physics, South China Agricultural University, Guangzhou 510642, China
| | - Yongyao Li
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Josep Batle
- CRISP Centre de Recerca Independent de sa Pobla, C. Albéniz 12, 07420 sa Pobla, Balearic Islands, Spain
| | - Boris A Malomed
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel
- Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
| |
Collapse
|
5
|
Two-Dimensional Solitons in Bose–Einstein Condensates with Spin–Orbit Coupling and Rydberg–Rydberg Interaction. PHOTONICS 2022. [DOI: 10.3390/photonics9050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Applying an imaginary time evolution method (AITEM) to the system of Gross–Pitaevskii equations, we find two-dimensional stable solitons in binary atomic Bose–Einstein condensates with spin–orbit coupling (SOC) and the Rydberg–Rydberg interaction (RRI). The stability of 2D solitons by utilizing their norm and energy is discussed in detail. Depending on the SOC and Rydberg–Rydberg interaction, we find stable zero-vorticity and vortical solitons. Furthermore, we show that the solitons can be effectively tuned by the local and nonlocal nonlinearities of this system.
Collapse
|
6
|
Li XX, Cheng RJ, Ma JL, Zhang AX, Xue JK. Solitary matter wave in spin-orbit-coupled Bose-Einstein condensates with helicoidal gauge potential. Phys Rev E 2021; 104:034214. [PMID: 34654141 DOI: 10.1103/physreve.104.034214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/13/2021] [Indexed: 11/07/2022]
Abstract
We analytically and numerically study the different types of solitary wave in the two-component helicoidal spin-orbit coupled Bose-Einstein condensates (BECs). Adopting the multiscale perturbation method, we derive the analytical bright and dark solitary wave solutions of the system, and the stationary and moving bright (dark) solitary waves are obtained. The effects of spin-orbit coupling, the helicoidal gauge potential, the momentum, the Zeeman splitting, and the atomic interactions on the solitary wave types are discussed, and it is found that the coupling of these physical parameters can manipulate different types of solitary waves in the system. The results indicate that the helicoidal gauge potential breaks the symmetric properties of the energy band of the system and adjusts the energy band structure, thus further effecting the solitary wave properties, i.e., stationary or moving solitary wave, bright, or dark solitary wave. Correspondingly, the analytical predictions for exciting stationary or moving bright (dark) solitary wave in parameter space are obtained. In particular, the helicoidal gauge potential changes the solitary wave types drastically for the weak spin-orbit coupling, i.e., in the absence of the helicoidal gauge potential, only dark (bright) solitary wave solutions exist in the system with repulsive (attractive) atomic interaction; however, in the presence of the helicoidal gauge potential, both dark and bright solitary waves can exist in the system regardless of whether the atomic interaction is repulsive or attractive. In addition, we investigate the stability of solitary waves and obtain the stability regions of different types of solitary waves by applying the linear stability analysis. The dynamic evolution results of the solitary waves by the direct numerical simulation not only validate the linear stability analysis but also confirm the analytical prediction of the solitary waves. Finally, the collision effects between solitary waves are also presented by the numerical simulation. It is shown that the interactions between solitary waves in the system have both elastic and inelastic collisions, which are closely related to the position of solitary wave states in the linear energy band. Our results provide a potential way to adjust the types of solitary waves in BECs with helicoidal gauge potential.
Collapse
Affiliation(s)
- Xiao-Xun Li
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rui-Jin Cheng
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ji-Li Ma
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ai-Xia Zhang
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ju-Kui Xue
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
7
|
Adhikari SK. Supersolid-like states in a two-dimensional trapped spin-orbit-coupled spin-1 condensate. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:265402. [PMID: 33882472 DOI: 10.1088/1361-648x/abfa5f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
We study supersolid-like states in a quasi-two-dimensional trapped Rashba and Dresselhaus spin-orbit (SO) coupled spin-1 condensate. For small strengths of SO couplingγ(γ⪅ 0.75), in the ferromagnetic phase, circularly-symmetric (0, ±1, ±2)- and (∓1, 0, ±1)-type states are formed where the numbers in the parentheses denote the angular momentum of the vortex at the center of the components and where the upper (lower) sign correspond to Rashba (Dresselhaus) coupling; in the antiferromagnetic phase, only (∓1, 0, ±1)-type states are formed. For large strengths of SO coupling, supersolid-like superlattice and superstripe states are formed in the ferromagnetic phase. In the antiferromagnetic phase, for large strengths of SO coupling, supersolid-like superstripe and multi-ring states are formed. For an equal mixture of Rashba and Dresselhaus SO couplings, only a superstripe state is found. All these states are found to be dynamically stable and hence accessible in an experiment and will enhance the fundamental understanding of crystallization onto radially periodic states in solids.
Collapse
Affiliation(s)
- S K Adhikari
- Instituto de Física Teórica, Universidade Estadual Paulista-UNESP, 01.140-070 São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Kartashov YV, Konotop VV. Stable Nonlinear Modes Sustained by Gauge Fields. PHYSICAL REVIEW LETTERS 2020; 125:054101. [PMID: 32794855 DOI: 10.1103/physrevlett.125.054101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
We reveal the universal effect of gauge fields on the existence, evolution, and stability of solitons in the spinor multidimensional nonlinear Schrödinger equation. Focusing on the two-dimensional case, we show that when gauge field can be split in a pure gauge and a nonpure gauge generating effective potential, the roles of these components in soliton dynamics are different: the localization characteristics of emerging states are determined by the curvature, while pure gauge affects the stability of the modes. Respectively the solutions can be exactly represented as the envelopes which may depend on the pure gauge implicitly through the effective potential, and modulating stationary carrier-mode states, which are independent of the curvature. Our central finding is that nonzero curvature can lead to the existence of unusual modes, in particular, enabling stable localized self-trapped fundamental and vortex-carrying states in media with constant repulsive interactions without additional external confining potentials and even in the expulsive external traps.
Collapse
Affiliation(s)
- Yaroslav V Kartashov
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow 108840, Russia
| | - Vladimir V Konotop
- Departamento de Física, Faculdade de Ciências, and Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, Edifício C8, Lisboa 1749-016, Portugal
| |
Collapse
|
9
|
Zhang X, Xu X, Zheng Y, Chen Z, Liu B, Huang C, Malomed BA, Li Y. Semidiscrete Quantum Droplets and Vortices. PHYSICAL REVIEW LETTERS 2019; 123:133901. [PMID: 31697515 DOI: 10.1103/physrevlett.123.133901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/01/2019] [Indexed: 06/10/2023]
Abstract
We consider a binary bosonic condensate with weak mean-field (MF) residual repulsion, loaded in an array of nearly one-dimensional traps coupled by transverse hopping. With the MF force balanced by the effectively one-dimensional attraction, induced in each trap by the Lee-Hung-Yang correction (produced by quantum fluctuations around the MF state), stable on-site- and intersite-centered semidiscrete quantum droplets (QDs) emerge in the array, as fundamental ones and self-trapped vortices, with winding numbers, at least, up to five, in both tightly bound and quasicontinuum forms. The application of a relatively strong trapping potential leads to squeezing transitions, which increase the number of sites in fundamental QDs and eventually replace vortex modes by fundamental or dipole ones. The results provide the first realization of stable semidiscrete vortex QDs, including ones with multiple vorticity.
Collapse
Affiliation(s)
- Xiliang Zhang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Xiaoxi Xu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Yiyin Zheng
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Zhaopin Chen
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and the Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bin Liu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Chunqing Huang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Boris A Malomed
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and the Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yongyao Li
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and the Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
10
|
Abstract
We consider possibilities to control dynamics of solitons of two types, maintained by the combination of cubic attraction and spin-orbit coupling (SOC) in a two-component system, namely, semi-dipoles (SDs) and mixed modes (MMs), by making the relative strength of the cross-attraction, γ , a function of time periodically oscillating around the critical value, γ = 1 , which is an SD/MM stability boundary in the static system. The structure of SDs is represented by the combination of a fundamental soliton in one component and localized dipole mode in the other, while MMs combine fundamental and dipole terms in each component. Systematic numerical analysis reveals a finite bistability region for the SDs and MMs around γ = 1 , which does not exist in the absence of the periodic temporal modulation (“management”), as well as emergence of specific instability troughs and stability tongues for the solitons of both types, which may be explained as manifestations of resonances between the time-periodic modulation and intrinsic modes of the solitons. The system can be implemented in Bose-Einstein condensates (BECs), and emulated in nonlinear optical waveguides.
Collapse
|
11
|
Luo W, Naseri A, Sirker J, Chakraborty T. Unique Spin Vortices and Topological Charges in Quantum Dots with Spin-orbit Couplings. Sci Rep 2019; 9:672. [PMID: 30679442 PMCID: PMC6345826 DOI: 10.1038/s41598-018-35837-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 11/11/2022] Open
Abstract
Spin textures of one or two electrons in a quantum dot with Rashba or Dresselhaus spin-orbit couplings reveal several intriguing properties. We show here that even at the single-electron level stable spin vortices with tunable topological charges exist. These topological textures appear in the ground state of the dots. The textures are stabilized by time-reversal symmetry breaking and are robust against the eccentricity of the dot. The topological charge is directly related to the sign of the z component of the spin in a large dot, allowing a direct probe of its topological properties. This would clearly pave the way to possible future topological spintronics. The phenomenon of spin vortices persists for the interacting two-electron dot in the presence of a magnetic field.
Collapse
Affiliation(s)
- Wenchen Luo
- Department of Physics, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Amin Naseri
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Jesko Sirker
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada.
| | - Tapash Chakraborty
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
12
|
Exotic complexes in one-dimensional Bose-Einstein condensates with spin-orbit coupling. Sci Rep 2018; 8:3706. [PMID: 29487364 PMCID: PMC5829142 DOI: 10.1038/s41598-018-22008-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/14/2018] [Indexed: 11/20/2022] Open
Abstract
By means of the F-expansion method and intensive numerical simulations, the existence of three families of nonlinear matter waves including Jacobi elliptic functions, solitons, and triangular periodic functions, is demonstrated for spin-orbit coupled Bose-Einstein condensates with a linear potential. In addition, several complexes are obtained by taking two distinct solutions of each family or two distinct families. These solutions sustain different types of two-body interactions in the condensate that can be repulsive, attractive, or attractive and repulsive. Whereas the spin-orbit coupling destabilized these nonlinear matter waves, the linear potential leads to a stabilization. The numerical results are in excellent agreement with our analytical findings and it can be expected that the proposed robust solutions should be observable for experimentally relevant conditions.
Collapse
|
13
|
Abstract
We introduce a two-component one-dimensional system, which is based on two nonlinear Schrödinger or Gross-Pitaevskii equations (GPEs) with spatially periodic modulation of linear coupling ("Rabi lattice") and self-repulsive nonlinearity. The system may be realized in a binary Bose-Einstein condensate, whose components are resonantly coupled by a standing optical wave, as well as in terms of the bimodal light propagation in periodically twisted waveguides. The system supports various types of gap solitons (GSs), which are constructed, and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. These include on- and off-site-centered solitons (the GSs of the off-site type are additionally categorized as spatially even and odd ones), which may be symmetric or antisymmetric, with respect to the coupled components. The GSs are chiefly stable in the first finite bandgap and unstable in the second one. In addition to that, there are narrow regions near the right edge of the first bandgap, and in the second one, which feature intricate alternation of stability and instability. Unstable solitons evolve into robust breathers or spatially confined turbulent modes. On-site-centered GSs are also considered in a version of the system that is made asymmetric by the Zeeman effect, or by birefringence of the optical waveguide. A region of alternate stability is found in the latter case too. In the limit of strong asymmetry, GSs are obtained in a semianalytical approximation, which reduces two coupled GPEs to a single one with an effective lattice potential.
Collapse
Affiliation(s)
- Zhaopin Chen
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boris A Malomed
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.,Laboratory of Nonlinear-Optical Informatics, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|