1
|
Messee Goulefack L, Masoller C, Yamapi R, Anteneodo C. Quantifying wave propagation in a chain of FitzHugh-Nagumo neurons. CHAOS (WOODBURY, N.Y.) 2025; 35:033110. [PMID: 40030067 DOI: 10.1063/5.0239976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/16/2025] [Indexed: 03/24/2025]
Abstract
Understanding how external stimuli propagate in neural systems is an important challenge in the fields of neuroscience and nonlinear dynamics. Despite extensive studies over several decades, this problem remains poorly understood. In this work, we examine a simple "toy model" of an excitable medium, a linear chain of diffusely coupled FitzHugh-Nagumo neurons, and analyze the transmission of a sinusoidal signal injected into one of the neurons at the ends of the chain. We measure to what extent the propagation of the wave reaching the opposite end is affected by the frequency and amplitude of the signal, the number of neurons in the chain, and the strength of their mutual diffusive coupling. To quantify these effects, we measure the cross correlation between the time series of the membrane potentials of the end neurons. This measure allows us to detect the values of the parameters that delimit different propagation regimes.
Collapse
Affiliation(s)
- L Messee Goulefack
- Fundamental Physics Laboratory, Department of Physics, Faculty of Science, University of Douala, Box 24157, Douala, Cameroon
- Department of Physics, Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente, 225-22451-900 Gávea, Rio de Janeiro, RJ, Brazil
| | - C Masoller
- Department of Physics, Universitat Politecnica de Catalunya, Rambla St. Nebridi 22, Terrassa 08222, Barcelona, Spain
| | - R Yamapi
- Fundamental Physics Laboratory, Department of Physics, Faculty of Science, University of Douala, Box 24157, Douala, Cameroon
| | - C Anteneodo
- Department of Physics, Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente, 225-22451-900 Gávea, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology (INCT) of Complex Systems, Rua Marquês de São Vicente, 225-22451-900 Gávea, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Cek ME, Uludag IF. Spectral resonance in Fitzhugh-Nagumo neuron system: relation with stochastic resonance and its role in EMG signal characterization. Cogn Neurodyn 2024; 18:1779-1787. [PMID: 39104670 PMCID: PMC11297864 DOI: 10.1007/s11571-023-10043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 08/07/2024] Open
Abstract
This paper examines the existence of spectral resonance in the Fitzhugh-Nagumo (FHN) system driven by periodical signal and unbounded noise having Gaussian distribution. It is newly revealed that if the inter-spike-interval (ISI) distribution is accumulated on a single cluster, there exists a dual relationship between stochastic resonance and spectral resonance determined by commonly used metric normalized standard deviation of ISI. Furthermore, the ISI distribution is also concentrated on more than one cluster depending on different driving signal frequency. Consequently, the apparent regular spiking behavior is observed to occur at specified driving signal frequencies which result in a local minimum in entropy function indicating spectral resonance. Therefore it is proposed that occurrence of spectral resonance strongly depends on the shape of ISI distribution tuned by the stochastic and deterministic driving signal parameters and conventional metrics may not indicate entire resonance behavior. Correspondingly, the entropy function is utilized in this paper as an alternative metric to enable the detection of the spectral resonance occurrence. The ISI distribution obtained from the FHN system is investigated to relate the real electromyography (EMG) measurements under different conditions such as myokymia and neuromyotonia. It is seen that ISI distribution observed from myokymic EMG exhibits notably close behavior as in the case of spectral resonance generated by FHN whereas a wider distribution is monitored in the case of neuromyotonia. It is contributed that the modeling and parameterization based on ISI distribution can be potentially used to identify different neural activities.
Collapse
Affiliation(s)
- Mehmet Emre Cek
- Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey
| | - Irem Fatma Uludag
- Department of Neurology, Health Sciences University Izmir Tepecik Training & Research Hospital, Izmir, Turkey
| |
Collapse
|
3
|
Kottlarz I, Parlitz U. Ordinal pattern-based complexity analysis of high-dimensional chaotic time series. CHAOS (WOODBURY, N.Y.) 2023; 33:2888089. [PMID: 37133925 DOI: 10.1063/5.0147219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
Abstract
The ordinal pattern-based complexity-entropy plane is a popular tool in nonlinear dynamics for distinguishing stochastic signals (noise) from deterministic chaos. Its performance, however, has mainly been demonstrated for time series from low-dimensional discrete or continuous dynamical systems. In order to evaluate the usefulness and power of the complexity-entropy (CE) plane approach for data representing high-dimensional chaotic dynamics, we applied this method to time series generated by the Lorenz-96 system, the generalized Hénon map, the Mackey-Glass equation, the Kuramoto-Sivashinsky equation, and to phase-randomized surrogates of these data. We find that both the high-dimensional deterministic time series and the stochastic surrogate data may be located in the same region of the complexity-entropy plane, and their representations show very similar behavior with varying lag and pattern lengths. Therefore, the classification of these data by means of their position in the CE plane can be challenging or even misleading, while surrogate data tests based on (entropy, complexity) yield significant results in most cases.
Collapse
Affiliation(s)
- Inga Kottlarz
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Department of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Robert-Koch-Str. 42a, 37075 Göttingen, Germany
| | - Ulrich Parlitz
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Robert-Koch-Str. 42a, 37075 Göttingen, Germany
| |
Collapse
|
4
|
Wu Y, Jiao Y, Zhao Y, Jia H, Xu L. Noise-induced quasiperiod and period switching. Phys Rev E 2022; 105:014419. [PMID: 35193235 DOI: 10.1103/physreve.105.014419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
We employ a typical genetic circuit model to explore how noise can influence dynamic structure. With the increase of a key interactive parameter, the model will deterministically go through two bifurcations and three dynamic structure regions. We find that a quasiperiodic component, which is not allowed by deterministic dynamics, will be generated by noise inducing in the first two regions, and this quasiperiod will be more and more stable along with the increase in noise. In particular, in the second region the quasiperiod will compete with a stable limit cycle and perform a new transient rhythm. Furthermore, we ascertain the entropy production rate and the heat dissipation rate, and discover a minimal value with theoretical elucidation. In the end, we unveil the mechanism of the formation of quasiperiods, and show a practical biological example. We expect this work to be helpful in solving some biological or ecological problems, such as the genetic origin of periodical cicadas and population dynamics with fluctuation.
Collapse
Affiliation(s)
- Yuxuan Wu
- Biophysics & Complex System Center, Center of Theoretical Physics, College of Physics, Jilin University Changchun 130012, People's Republic of China
| | - Yuxing Jiao
- Biophysics & Complex System Center, Center of Theoretical Physics, College of Physics, Jilin University Changchun 130012, People's Republic of China
| | - Yanzhen Zhao
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Haojun Jia
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Liufang Xu
- Biophysics & Complex System Center, Center of Theoretical Physics, College of Physics, Jilin University Changchun 130012, People's Republic of China
| |
Collapse
|
5
|
Masoliver M, Masoller C. Neuronal Transmission of Subthreshold Periodic Stimuli Via Symbolic Spike Patterns. ENTROPY 2020; 22:e22050524. [PMID: 33286297 PMCID: PMC7517018 DOI: 10.3390/e22050524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/16/2022]
Abstract
We study how sensory neurons detect and transmit a weak external stimulus. We use the FitzHugh-Nagumo model to simulate the neuronal activity. We consider a sub-threshold stimulus, i.e., the stimulus is below the threshold needed for triggering action potentials (spikes). However, in the presence of noise the neuron that perceives the stimulus fires a sequence of action potentials (a spike train) that carries the stimulus' information. To yield light on how the stimulus' information can be encoded and transmitted, we consider the simplest case of two coupled neurons, such that one neuron (referred to as neuron 1) perceives a subthreshold periodic signal but the second neuron (neuron 2) does not perceive the signal. We show that, for appropriate coupling and noise strengths, both neurons fire spike trains that have symbolic patterns (defined by the temporal structure of the inter-spike intervals), whose frequencies of occurrence depend on the signal's amplitude and period, and are similar for both neurons. In this way, the signal information encoded in the spike train of neuron 1 propagates to the spike train of neuron 2. Our results suggest that sensory neurons can exploit the presence of neural noise to fire spike trains where the information of a subthreshold stimulus is encoded in over expressed and/or in less expressed symbolic patterns.
Collapse
|
6
|
Estarellas C, Masoliver M, Masoller C, Mirasso CR. Characterizing signal encoding and transmission in class I and class II neurons via ordinal time-series analysis. CHAOS (WOODBURY, N.Y.) 2020; 30:013123. [PMID: 32013495 DOI: 10.1063/1.5121257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Neurons encode and transmit information in spike sequences. However, despite the effort devoted to understand the encoding and transmission of information, the mechanisms underlying the neuronal encoding are not yet fully understood. Here, we use a nonlinear method of time-series analysis (known as ordinal analysis) to compare the statistics of spike sequences generated by applying an input signal to the neuronal model of Morris-Lecar. In particular, we consider two different regimes for the neurons which lead to two classes of excitability: class I, where the frequency-current curve is continuous and class II, where the frequency-current curve is discontinuous. By applying ordinal analysis to sequences of inter-spike-intervals (ISIs) our goals are (1) to investigate if different neuron types can generate spike sequences which have similar symbolic properties; (2) to get deeper understanding on the effects that electrical (diffusive) and excitatory chemical (i.e., excitatory synapse) couplings have; and (3) to compare, when a small-amplitude periodic signal is applied to one of the neurons, how the signal features (amplitude and frequency) are encoded and transmitted in the generated ISI sequences for both class I and class II type neurons and electrical or chemical couplings. We find that depending on the frequency, specific combinations of neuron/class and coupling-type allow a more effective encoding, or a more effective transmission of the signal.
Collapse
Affiliation(s)
- C Estarellas
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears E-07122, Palma de Mallorca, Spain
| | - M Masoliver
- Departament de Física, Universitat Politècnica de Catalunya, Terrassa 08222, Spain
| | - C Masoller
- Departament de Física, Universitat Politècnica de Catalunya, Terrassa 08222, Spain
| | - Claudio R Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears E-07122, Palma de Mallorca, Spain
| |
Collapse
|
7
|
Malagarriga D, Pons AJ, Villa AEP. Complex temporal patterns processing by a neural mass model of a cortical column. Cogn Neurodyn 2019; 13:379-392. [PMID: 31354883 PMCID: PMC6624230 DOI: 10.1007/s11571-019-09531-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
It is well known that neuronal networks are capable of transmitting complex spatiotemporal information in the form of precise sequences of neuronal discharges characterized by recurrent patterns. At the same time, the synchronized activity of large ensembles produces local field potentials that propagate through highly dynamic oscillatory waves, such that, at the whole brain scale, complex spatiotemporal dynamics of electroencephalographic (EEG) signals may be associated to sensorimotor decision making processes. Despite these experimental evidences, the link between highly temporally organized input patterns and EEG waves has not been studied in detail. Here, we use a neural mass model to investigate to what extent precise temporal information, carried by deterministic nonlinear attractor mappings, is filtered and transformed into fluctuations in phase, frequency and amplitude of oscillatory brain activity. The phase shift that we observe, when we drive the neural mass model with specific chaotic inputs, shows that the local field potential amplitude peak appears in less than one full cycle, thus allowing traveling waves to encode temporal information. After converting phase and amplitude changes obtained into point processes, we quantify input-output similarity following a threshold-filtering algorithm onto the amplitude wave peaks. Our analysis shows that the neural mass model has the capacity for gating the input signal and propagate selected temporal features of that signal. Finally, we discuss the effect of local excitatory/inhibitory balance on these results and how excitability in cortical columns, controlled by neuromodulatory innervation of the cerebral cortex, may contribute to set a fine tuning and gating of the information fed to the cortex.
Collapse
Affiliation(s)
- Daniel Malagarriga
- Departament de Física, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
- Neuroheuristic Research Group, University of Lausanne, 1015 Lausanne, Switzerland
| | - Antonio J. Pons
- Departament de Física, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | | |
Collapse
|
8
|
Braun W, Longtin A. Interspike interval correlations in networks of inhibitory integrate-and-fire neurons. Phys Rev E 2019; 99:032402. [PMID: 30999498 DOI: 10.1103/physreve.99.032402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 11/07/2022]
Abstract
We study temporal correlations of interspike intervals, quantified by the network-averaged serial correlation coefficient (SCC), in networks of both current- and conductance-based purely inhibitory integrate-and-fire neurons. Numerical simulations reveal transitions to negative SCCs at intermediate values of bias current drive and network size. As bias drive and network size are increased past these values, the SCC returns to zero. The SCC is maximally negative at an intermediate value of the network oscillation strength. The dependence of the SCC on two canonical schemes for synaptic connectivity is studied, and it is shown that the results occur robustly in both schemes. For conductance-based synapses, the SCC becomes negative at the onset of both a fast and slow coherent network oscillation. We then show by means of offline simulations using prerecorded network activity that a neuron's SCC is highly sensitive to its number of presynaptic inputs. Finally, we devise a noise-reduced diffusion approximation for current-based networks that accounts for the observed temporal correlation transitions.
Collapse
Affiliation(s)
- Wilhelm Braun
- Neural Network Dynamics and Computation, Institut für Genetik, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany.,Department of Physics and Centre for Neural Dynamics, University of Ottawa, 598 King Edward, Ottawa K1N 6N5, Canada
| | - André Longtin
- Department of Physics and Centre for Neural Dynamics, University of Ottawa, 598 King Edward, Ottawa K1N 6N5, Canada
| |
Collapse
|
9
|
Sub-threshold signal encoding in coupled FitzHugh-Nagumo neurons. Sci Rep 2018; 8:8276. [PMID: 29844354 PMCID: PMC5974132 DOI: 10.1038/s41598-018-26618-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/15/2018] [Indexed: 11/09/2022] Open
Abstract
Despite intensive research, the mechanisms underlying the neural code remain poorly understood. Recent work has focused on the response of a single neuron to a weak, sub-threshold periodic signal. By simulating the stochastic FitzHugh-Nagumo (FHN) model and then using a symbolic method to analyze the firing activity, preferred and infrequent spike patterns (defined by the relative timing of the spikes) were detected, whose probabilities encode information about the signal. As not individual neurons but neuronal populations are responsible for sensory coding and information transfer, a relevant question is how a second neuron, which does not perceive the signal, affects the detection and the encoding of the signal, done by the first neuron. Through simulations of two stochastic FHN neurons we show that the encoding of a sub-threshold signal in symbolic spike patterns is a plausible mechanism. The neuron that perceives the signal fires a spike train that, despite having an almost random temporal structure, has preferred and infrequent patterns which carry information about the signal. Our findings could be relevant for sensory systems composed by two noisy neurons, when only one detects a weak external input.
Collapse
|
10
|
Braun W, Thul R, Longtin A. Evolution of moments and correlations in nonrenewal escape-time processes. Phys Rev E 2017; 95:052127. [PMID: 28618562 DOI: 10.1103/physreve.95.052127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 06/07/2023]
Abstract
The theoretical description of nonrenewal stochastic systems is a challenge. Analytical results are often not available or can be obtained only under strong conditions, limiting their applicability. Also, numerical results have mostly been obtained by ad hoc Monte Carlo simulations, which are usually computationally expensive when a high degree of accuracy is needed. To gain quantitative insight into these systems under general conditions, we here introduce a numerical iterated first-passage time approach based on solving the time-dependent Fokker-Planck equation (FPE) to describe the statistics of nonrenewal stochastic systems. We illustrate the approach using spike-triggered neuronal adaptation in the leaky and perfect integrate-and-fire model, respectively. The transition to stationarity of first-passage time moments and their sequential correlations occur on a nontrivial time scale that depends on all system parameters. Surprisingly this is so for both single exponential and scale-free power-law adaptation. The method works beyond the small noise and time-scale separation approximations. It shows excellent agreement with direct Monte Carlo simulations, which allow for the computation of transient and stationary distributions. We compare different methods to compute the evolution of the moments and serial correlation coefficients (SCCs) and discuss the challenge of reliably computing the SCCs, which we find to be very sensitive to numerical inaccuracies for both the leaky and perfect integrate-and-fire models. In conclusion, our methods provide a general picture of nonrenewal dynamics in a wide range of stochastic systems exhibiting short- and long-range correlations.
Collapse
Affiliation(s)
- Wilhelm Braun
- Department of Physics and Centre for Neural Dynamics, University of Ottawa, 598 King Edward, Ottawa K1N 6N5, Canada
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Rüdiger Thul
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - André Longtin
- Department of Physics and Centre for Neural Dynamics, University of Ottawa, 598 King Edward, Ottawa K1N 6N5, Canada
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|