1
|
Zhao Q, Tian H, Xu Z, Zhang L, Zhang Z, Li H, Zhang S, Liu Y. Periodic spiking pulse formation in broadband nonlinear optoelectronic oscillator. OPTICS EXPRESS 2024; 32:28245-28258. [PMID: 39538645 DOI: 10.1364/oe.525622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/14/2024] [Indexed: 11/16/2024]
Abstract
An approach to generating periodic spiking pulses in a broadband opto-electronic oscillator (OEO) without external injection is proposed and demonstrated. Through biasing the electro-optic Mach-Zehnder modulator (MZM) in the OEO cavity at its nonlinear working point, spiking pulses are excited by the self-generated chaos under the combined action of the loop filter response time and the nonlinear excitation effect. An interaction force is introduced between pulses. As a result, the pulse number in a single roundtrip duration and the temporal distribution of the generated spiking pulses can be tuned by adjusting the loop gain and the direct-current (DC) bias voltage of the MZM. Both numerical simulation and experiment are carried out to demonstrate the spiking pulse generation mechanism, where ultra-short spiking pulse trains with even and uneven temporal distribution are generated.
Collapse
|
2
|
Masominia A, Calvet LE, Thorpe S, Barbay S. Online spike-based recognition of digits with ultrafast microlaser neurons. Front Comput Neurosci 2023; 17:1164472. [PMID: 37465646 PMCID: PMC10350502 DOI: 10.3389/fncom.2023.1164472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Classification and recognition tasks performed on photonic hardware-based neural networks often require at least one offline computational step, such as in the increasingly popular reservoir computing paradigm. Removing this offline step can significantly improve the response time and energy efficiency of such systems. We present numerical simulations of different algorithms that utilize ultrafast photonic spiking neurons as receptive fields to allow for image recognition without an offline computing step. In particular, we discuss the merits of event, spike-time and rank-order based algorithms adapted to this system. These techniques have the potential to significantly improve the efficiency and effectiveness of optical classification systems, minimizing the number of spiking nodes required for a given task and leveraging the parallelism offered by photonic hardware.
Collapse
Affiliation(s)
- Amir Masominia
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | | | - Simon Thorpe
- CERCO UMR5549, CNRS—Université Toulouse III, Toulouse, France
| | - Sylvain Barbay
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| |
Collapse
|
3
|
Terrien S, Krauskopf B, Broderick NGR, Pammi VA, Braive R, Sagnes I, Beaudoin G, Pantzas K, Barbay S. Merging and disconnecting resonance tongues in a pulsing excitable microlaser with delayed optical feedback. CHAOS (WOODBURY, N.Y.) 2023; 33:023142. [PMID: 36859235 DOI: 10.1063/5.0124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Excitability, encountered in numerous fields from biology to neurosciences and optics, is a general phenomenon characterized by an all-or-none response of a system to an external perturbation of a given strength. When subject to delayed feedback, excitable systems can sustain multistable pulsing regimes, which are either regular or irregular time sequences of pulses reappearing every delay time. Here, we investigate an excitable microlaser subject to delayed optical feedback and study the emergence of complex pulsing dynamics, including periodic, quasiperiodic, and irregular pulsing regimes. This work is motivated by experimental observations showing these different types of pulsing dynamics. A suitable mathematical model, written as a system of delay differential equations, is investigated through an in-depth bifurcation analysis. We demonstrate that resonance tongues play a key role in the emergence of complex dynamics, including non-equidistant periodic pulsing solutions and chaotic pulsing. The structure of resonance tongues is shown to depend very sensitively on the pump parameter. Successive saddle transitions of bounding saddle-node bifurcations constitute a merging process that results in unexpectedly large regions of locked dynamics, which subsequently disconnect from the relevant torus bifurcation curve; the existence of such unconnected regions of periodic pulsing is in excellent agreement with experimental observations. As we show, the transition to unconnected resonance regions is due to a general mechanism: the interaction of resonance tongues locally at an extremum of the rotation number on a torus bifurcation curve. We present and illustrate the two generic cases of disconnecting and disappearing resonance tongues. Moreover, we show how a pair of a maximum and a minimum of the rotation number appears naturally when two curves of torus bifurcation undergo a saddle transition (where they connect differently).
Collapse
Affiliation(s)
- Soizic Terrien
- Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans, France
| | - Bernd Krauskopf
- Department of Mathematics and Dodd-Walls Centre for Photonic and Quantum Technologies, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Neil G R Broderick
- Department of Physics and Dodd-Walls Centre for Photonic and Quantum Technologies, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Venkata A Pammi
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Rémy Braive
- Université Paris-Saclay, Université Paris Cité, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France and Institut Universitaire de France, Paris, France
| | - Isabelle Sagnes
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Grégoire Beaudoin
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Konstantinos Pantzas
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Sylvain Barbay
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| |
Collapse
|
4
|
Numerical Demonstration of the Transmission of Low Frequency Fluctuation Dynamics Generated by a Semiconductor Laser with Optical Feedback. PHOTONICS 2022. [DOI: 10.3390/photonics9070483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, the transmission mechanism of the spike information embedded in the low frequency fluctuation (LFF) dynamic in a cascaded laser system is numerically demonstrated. In the cascaded laser system, the LFF waveform is first generated by a drive laser with optical feedback and is then injected into a response laser. The range of crucial system parameters that can make the response laser generate the LFF dynamic is studied, and the effect of parameter mismatch on the transmission of LFF dynamics is explored through a method of symbolic time-series analysis and the index, such as the spike rate and the cross-correlation coefficient. The results show that the mismatch of the pump current has a more significant influence on the transmission of LFF waveforms than that of the internal physical parameter of the laser, such as the linewidth enhancement factor. Moreover, increasing the injection strength can enhance the robustness of LFF transmission. As spikes of the LFF dynamic generated by lasers with optical feedback is similar to the spike of neurons, the results of this paper can help understanding the information transporting and processing inside the photonic neurons.
Collapse
|
5
|
Robertson J, Kirkland P, Alanis JA, Hejda M, Bueno J, Di Caterina G, Hurtado A. Ultrafast neuromorphic photonic image processing with a VCSEL neuron. Sci Rep 2022; 12:4874. [PMID: 35318356 PMCID: PMC8940934 DOI: 10.1038/s41598-022-08703-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
The ever-increasing demand for artificial intelligence (AI) systems is underlining a significant requirement for new, AI-optimised hardware. Neuromorphic (brain-like) processors are one highly-promising solution, with photonic-enabled realizations receiving increasing attention. Among these, approaches based upon vertical cavity surface emitting lasers (VCSELs) are attracting interest given their favourable attributes and mature technology. Here, we demonstrate a hardware-friendly neuromorphic photonic spike processor, using a single VCSEL, for all-optical image edge-feature detection. This exploits the ability of a VCSEL-based photonic neuron to integrate temporally-encoded pixel data at high speed; and fire fast (100 ps-long) optical spikes upon detecting desired image features. Furthermore, the photonic system is combined with a software-implemented spiking neural network yielding a full platform for complex image classification tasks. This work therefore highlights the potential of VCSEL-based platforms for novel, ultrafast, all-optical neuromorphic processors interfacing with current computation and communication systems for use in future light-enabled AI and computer vision functionalities.
Collapse
Affiliation(s)
- Joshua Robertson
- SUPA Department of Physics, Institute of Photonics, TIC Centre, University of Strathclyde, 99 George St., Glasgow, G1 1RD, UK.
| | - Paul Kirkland
- Department of Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George St., Glasgow, G1 1XW, UK
| | - Juan Arturo Alanis
- SUPA Department of Physics, Institute of Photonics, TIC Centre, University of Strathclyde, 99 George St., Glasgow, G1 1RD, UK
| | - Matěj Hejda
- SUPA Department of Physics, Institute of Photonics, TIC Centre, University of Strathclyde, 99 George St., Glasgow, G1 1RD, UK
| | - Julián Bueno
- SUPA Department of Physics, Institute of Photonics, TIC Centre, University of Strathclyde, 99 George St., Glasgow, G1 1RD, UK
| | - Gaetano Di Caterina
- Department of Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George St., Glasgow, G1 1XW, UK
| | - Antonio Hurtado
- SUPA Department of Physics, Institute of Photonics, TIC Centre, University of Strathclyde, 99 George St., Glasgow, G1 1RD, UK
| |
Collapse
|
6
|
Dillane M, Lingnau B, Viktorov EA, Dubinkin I, Fedorov N, Kelleher B. Asymmetric excitable phase triggering in an optically injected semiconductor laser. OPTICS LETTERS 2021; 46:440-443. [PMID: 33449048 DOI: 10.1364/ol.410085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
One of the defining characteristics of excitability is the existence of an excitable threshold: the minimum perturbation amplitude necessary to produce an excitable response. We analyze an optically injected dual state quantum dot laser, previously shown to display a dual state stochastic excitable dynamic. We show that deterministic triggering of this dynamic can be achieved via optical phase perturbations. Further, we demonstrate that there are in fact two asymmetric excitable thresholds in this system corresponding to the two possible directions of optical phase perturbations. For fast enough perturbations, an excitable interval arises, and there is a limit to the perturbation amplitude, above which excitations no longer arise, a phenomenon heretofore unobserved in studies of excitability.
Collapse
|
7
|
Terrien S, Pammi VA, Krauskopf B, Broderick NGR, Barbay S. Pulse-timing symmetry breaking in an excitable optical system with delay. Phys Rev E 2021; 103:012210. [PMID: 33601571 DOI: 10.1103/physreve.103.012210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Excitable systems with delayed feedback are important in areas from biology to neuroscience and optics. They sustain multistable pulsing regimes with different numbers of equidistant pulses in the feedback loop. Experimentally and theoretically, we report on the pulse-timing symmetry breaking of these regimes in an optical system. A bifurcation analysis unveils that this originates in a resonance phenomenon and that symmetry-broken states are stable in large regions of the parameter space. These results have impact in photonics for, e.g., optical computing and versatile sources of optical pulses.
Collapse
Affiliation(s)
- Soizic Terrien
- The Dodd-Walls Centre for Photonic and Quantum Technologies, The University of Auckland, New Zealand
| | - Venkata A Pammi
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - Bernd Krauskopf
- The Dodd-Walls Centre for Photonic and Quantum Technologies, The University of Auckland, New Zealand
| | - Neil G R Broderick
- The Dodd-Walls Centre for Photonic and Quantum Technologies, The University of Auckland, New Zealand
| | - Sylvain Barbay
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| |
Collapse
|
8
|
Robertson J, Zhang Y, Hejda M, Bueno J, Xiang S, Hurtado A. Image edge detection with a photonic spiking VCSEL-neuron. OPTICS EXPRESS 2020; 28:37526-37537. [PMID: 33379585 DOI: 10.1364/oe.408747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
We report both experimentally and in theory on the detection of edge features in digital images with an artificial optical spiking neuron based on a vertical-cavity surface-emitting laser (VCSEL). The latter delivers fast (< 100 ps) neuron-like optical spikes in response to optical inputs pre-processed using convolution techniques; hence representing image feature information with a spiking data output directly in the optical domain. The proposed technique is able to detect target edges of different directionalities in digital images by applying individual kernel operators and can achieve complete image edge detection using gradient magnitude. Importantly, the neuromorphic (brain-like) spiking edge detection of this work uses commercially sourced VCSELs exhibiting responses at sub-nanosecond rates (many orders of magnitude faster than biological neurons) and operating at the important telecom wavelength of 1300 nm; hence making our approach compatible with optical communication and data-centre technologies.
Collapse
|
9
|
Alfaro-Bittner K, Barbay S, Clerc MG. Pulse propagation in a 1D array of excitable semiconductor lasers. CHAOS (WOODBURY, N.Y.) 2020; 30:083136. [PMID: 32872804 DOI: 10.1063/5.0006195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Nonlinear pulse propagation is a major feature in continuously extended excitable systems. The persistence of this phenomenon in coupled excitable systems is expected. Here, we investigate theoretically the propagation of nonlinear pulses in a 1D array of evanescently coupled excitable semiconductor lasers. We show that the propagation of pulses is characterized by a hopping dynamics. The average pulse speed and bifurcation diagram are characterized as a function of the coupling strength between the lasers. Several instabilities are analyzed such as the onset and disappearance of pulse propagation and a spontaneous breaking of the translation symmetry. The pulse propagation modes evidenced are specific to the discrete nature of the 1D array of excitable lasers.
Collapse
Affiliation(s)
- K Alfaro-Bittner
- Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110V, Valparaíso, Chile
| | - S Barbay
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France
| | - M G Clerc
- Departamento de Física and Millennium Institute for Research in Optics, FCFM, Universidad de Chile, Casilla, 487-3 Santiago, Chile
| |
Collapse
|
10
|
Robertson J, Hejda M, Bueno J, Hurtado A. Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons. Sci Rep 2020; 10:6098. [PMID: 32269249 PMCID: PMC7142074 DOI: 10.1038/s41598-020-62945-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/19/2020] [Indexed: 11/24/2022] Open
Abstract
In today’s data-driven world, the ability to process large data volumes is crucial. Key tasks, such as pattern recognition and image classification, are well suited for artificial neural networks (ANNs) inspired by the brain. Neuromorphic computing approaches aimed towards physical realizations of ANNs have been traditionally supported by micro-electronic platforms, but recently, photonic techniques for neuronal emulation have emerged given their unique properties (e.g. ultrafast operation, large bandwidths, low cross-talk). Yet, hardware-friendly systems of photonic spiking neurons able to perform processing tasks at high speeds and with continuous operation remain elusive. This work provides a first experimental report of Vertical-Cavity Surface-Emitting Laser-based spiking neurons demonstrating different functional processing tasks, including coincidence detection and pattern recognition, at ultrafast rates. Furthermore, our approach relies on simple hardware implementations using off-the-shelf components. These results therefore hold exciting prospects for novel, compact and high-speed neuromorphic photonic platforms for future computing and Artificial Intelligence systems.
Collapse
Affiliation(s)
- Joshua Robertson
- Institute of Photonics, University of Strathclyde, 99 George St, Glasgow, G11RD, United Kingdom
| | - Matěj Hejda
- Institute of Photonics, University of Strathclyde, 99 George St, Glasgow, G11RD, United Kingdom
| | - Julián Bueno
- Institute of Photonics, University of Strathclyde, 99 George St, Glasgow, G11RD, United Kingdom
| | - Antonio Hurtado
- Institute of Photonics, University of Strathclyde, 99 George St, Glasgow, G11RD, United Kingdom.
| |
Collapse
|
11
|
Dillane M, Dubinkin I, Fedorov N, Erneux T, Goulding D, Kelleher B, Viktorov EA. Excitable interplay between lasing quantum dot states. Phys Rev E 2019; 100:012202. [PMID: 31499912 DOI: 10.1103/physreve.100.012202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 06/10/2023]
Abstract
The optically injected semiconductor laser system has proven to be an excellent source of experimental nonlinear dynamics, particularly regarding the generation of excitable pulses. Typically for low-injection strengths, these pulses are the result of a small above-threshold perturbation of a stable steady state, the underlying physics is well described by the Adler phase equation, and each laser intensity pulse is accompanied by a 2π phase rotation. In this article, we show how, with a dual-state quantum dot laser, a variation of type I excitability is possible that cannot be described by the Adler model. The laser is operated so that emission is from the excited state only. The ground state can be activated and phase locked to the master laser via optical injection while the excited state is completely suppressed. Close to the phase-locking boundary, a region of ground-state emission dropouts correlated to excited-state pulses can be observed. We show that the phase of the ground state undergoes bounded rotations due to interactions with the excited state. We analyze the system both experimentally and numerically and find excellent agreement. Particular attention is devoted to the bifurcation conditions needed for an excitable pulse as well as its time evolution.
Collapse
Affiliation(s)
- M Dillane
- Department of Physics, University College Cork, Cork, Ireland
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, Ireland
| | - I Dubinkin
- National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia
| | - N Fedorov
- National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia
| | - T Erneux
- Optique Nonlinéaire Théorique, Campus Plaine, CP 231, 1050 Bruxelles, Belgium
| | - D Goulding
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, Ireland
- Centre for Advanced Photonics and Process Analysis, Cork Institute of Technology, Cork, Ireland
- Department of Mathematics, Cork Institute of Technology, Cork, Ireland
| | - B Kelleher
- Department of Physics, University College Cork, Cork, Ireland
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, Ireland
| | - E A Viktorov
- National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia
| |
Collapse
|
12
|
Zhang Y, Xiang S, Guo X, Wen A, Hao Y. Polarization-resolved and polarization- multiplexed spike encoding properties in photonic neuron based on VCSEL-SA. Sci Rep 2018; 8:16095. [PMID: 30382142 PMCID: PMC6208377 DOI: 10.1038/s41598-018-34537-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/18/2018] [Indexed: 12/02/2022] Open
Abstract
The spike encoding properties of two polarization-resolved modes in vertical-cavity surface-emitting laser with an embedded saturable absorber (VCSEL-SA) are investigated numerically, based on the spin-flip model combined with the Yamada model. The results show that the external input optical pulse (EIOP) can be encoded into spikes in X-polarization (XP) mode, Y-polarization (YP) mode, or both XP and YP modes. Furthermore, the numerical bifurcation diagrams show that a lower (higher) strength of EIOP is beneficial for generating tonic (phasic) spikes; a small amplitude anisotropy contributes to wide (narrow) tonic spiking range in XP (YP) mode; a large current leads to low thresholds of EIOP strength for both XP and YP modes. However, the spike encoding properties are hardly affected by the phase anisotropy. The encoding rate is shown to be improved by increasing EIOP strength. Moreover, dual-channel polarization-multiplexed spike encoding can also be achieved in a single VCSEL-SA. To the best of our knowledge, such single channel polarization-resolved and dual-channel polarization-multiplexed spike encoding schemes have not yet been reported. Hence, this work is valuable for ultrafast photonic neuromorphic systems and brain-inspired information processing.
Collapse
Affiliation(s)
- Yahui Zhang
- State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, 710071, China
| | - Shuiying Xiang
- State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, 710071, China.
- State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Xingxing Guo
- State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, 710071, China
| | - Aijun Wen
- State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, 710071, China
| | - Yue Hao
- State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, 710071, China
| |
Collapse
|
13
|
Terrien S, Krauskopf B, Broderick NGR, Braive R, Beaudoin G, Sagnes I, Barbay S. Pulse train interaction and control in a microcavity laser with delayed optical feedback. OPTICS LETTERS 2018; 43:3013-3016. [PMID: 29957769 DOI: 10.1364/ol.43.003013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
We report experimental and theoretical results on the pulse train dynamics in an excitable semiconductor microcavity laser with an integrated saturable absorber and delayed optical feedback. We show how short optical control pulses can trigger, erase, or retime regenerative pulse trains in the external cavity. Both repulsive and attractive interactions between pulses are observed, and are explained in terms of the internal dynamics of the carriers. A bifurcation analysis of a model consisting of a system of nonlinear delay differential equations shows that arbitrary sequences of coexisting pulse trains are very long transients towards weakly stable periodic solutions with equidistant pulses in the external cavity.
Collapse
|
14
|
Erneux T, Barbay S. Two distinct excitable responses for a laser with a saturable absorber. Phys Rev E 2018; 97:062214. [PMID: 30011474 DOI: 10.1103/physreve.97.062214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 06/08/2023]
Abstract
Excitable lasers with saturable absorbers are currently investigated as potential candidates for low level spike processing tasks in integrated optical platforms. Following a small perturbation of a stable equilibrium, a single and intense laser pulse can be generated before returning to rest. Motivated by recent experiments [Selmi et al., Phys. Rev. E 94, 042219 (2016)10.1103/PhysRevE.94.042219], we consider the rate equations for a laser containing a saturable absorber (LSA) and analyze the effects of different initial perturbations. With its three steady states and following Hodgkin classification, the LSA is a Type I excitable system. By contrast to perturbations on the intensity leading to the same intensity pulse, perturbations on the gain generate pulses of different amplitudes. We explain these distinct behaviors by analyzing the slow-fast dynamics of the laser in each case. We first consider a two-variable LSA model for which the conditions of excitability can be explored in the phase plane in a transparent manner. We then concentrate on the full three variable LSA equations and analyze its solutions near a degenerate steady bifurcation point. This analysis generalizes previous results [Dubbeldam et al., Phys. Rev. E 60, 6580 (1999)1063-651X10.1103/PhysRevE.60.6580] for unequal carrier density rates. Last, we discuss a fundamental difference between neuron and laser models.
Collapse
Affiliation(s)
- Thomas Erneux
- Université Libre de Bruxelles, Optique Nonlinéaire Théorique, Campus Plaine, CP 231, 1050 Bruxelles, Belgium
| | - Sylvain Barbay
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay, site de Marcoussis, 91460 Marcoussis, France
| |
Collapse
|
15
|
Abstract
Neurons communicate by brief bursts of spikes separated by silent phases and information may be encoded into the burst duration or through the structure of the interspike intervals. Inspired by the importance of bursting activities in neuronal computation, we have investigated the bursting oscillations of an optically injected quantum dot laser. We find experimentally that the laser periodically switches between two distinct operating states with distinct optical frequencies exhibiting either fast oscillatory or nearly steady state evolutions (two-color bursting oscillations). The conditions for their emergence and their control are analyzed by systematic simulations of the laser rate equations. By projecting the bursting solution onto the bifurcation diagram of a fast subsystem, we show how a specific hysteresis phenomenon explains the transitions between active and silent phases. Since size-controlled bursts can contain more information content than single spikes our results open the way to new forms of neuron inspired optical communication.
Collapse
|
16
|
Robertson J, Deng T, Javaloyes J, Hurtado A. Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments. OPTICS LETTERS 2017; 42:1560-1563. [PMID: 28409798 DOI: 10.1364/ol.42.001560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report experimentally and theoretically on the controllable inhibition of spiking regimes in a 1300 nm wavelength vertical-cavity surface-emitting laser. Reproducible suppression of spiking dynamics is demonstrated at fast operation speeds (up to sub-ns rates) and with total control on the temporal duration of the spiking inhibition windows. This Letter opens new paths toward a photonic inhibitory neuronal model system for use in future neuromorphic photonic information processing modules and which are able to operate at speeds up to 8 orders of magnitude faster than biological neurons.
Collapse
|