1
|
Ageeva MV, Goldobin DS. Nonlinear bias of collective oscillation frequency induced by asymmetric Cauchy noise. CHAOS (WOODBURY, N.Y.) 2025; 35:023126. [PMID: 39908560 DOI: 10.1063/5.0239363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
We report the effect of nonlinear bias of the frequency of collective oscillations of sin-coupled phase oscillators subject to individual asymmetric Cauchy noises. The noise asymmetry makes the Ott-Antonsen ansatz inapplicable. We argue that, for all stable non-Gaussian noises, the tail asymmetry is not only possible (in addition to the trivial shift of the distribution median) but also generic in many physical and biophysical setups. For the theoretical description of the effect, we develop a mathematical formalism based on the circular cumulants. The derivation of rigorous asymptotic results can be performed on this basis but seems infeasible in traditional terms of the circular moments (the Kuramoto-Daido order parameters). The effect of the entrainment of individual oscillator frequencies by the global oscillations is also reported in detail. The accuracy of theoretical results based on the low-dimensional circular cumulant reductions is validated with the high-accuracy "exact" solutions calculated with the continued fraction method.
Collapse
Affiliation(s)
- Maria V Ageeva
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia
| | - Denis S Goldobin
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia
- Institute of Physics and Mathematics, Perm State University, Bukirev Street 15, 614990 Perm, Russia
- Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Guo J, Ning L. Directed transport of particles in coupled fractional-order systems excited by Lévy noise. CHAOS (WOODBURY, N.Y.) 2025; 35:023112. [PMID: 39899580 DOI: 10.1063/5.0246761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025]
Abstract
This paper investigates the directed transport of particles in a coupled fractional-order system excited by Lévy noise. Numerical simulations reveal the effects of fractional order, Lévy noise and coupling coefficients on the directed transport. It is found that there exists an optimal fractional order, which maximizes the directed transport of particles. The optimal fractional order for the directed transport shifts to the left or right with different noise parameters, which means that the appropriate fractional order and noise parameters should be taken into account to maximize the directed transport. Meanwhile, the increase of the scale and symmetry parameters intensifies the directed transport of the particles, while the increase of the stability index suppresses the directed transport, so appropriate Lévy noise parameters will effectively amplify the directed transport. In addition, strong coupling can also effectively promote the directed transport of particles. These studies may provide a theoretical basis for the design of nanomachines, improving drug delivery across cell membranes and treating diseases of the nervous system.
Collapse
Affiliation(s)
- Jing Guo
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Lijuan Ning
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
3
|
Jangid P, Chaudhury S. Transition Path Dynamics of Non-Markovian Systems across a Rough Potential Barrier. J Phys Chem A 2024; 128:10041-10052. [PMID: 39528308 DOI: 10.1021/acs.jpca.4c05036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Transition paths refer to rare events in physics, chemistry, and biology where the molecules cross barriers separating stable molecular conformations. The conventional analysis of the transition path times employs a diffusive and memoryless transition over a smooth potential barrier. However, it is widely acknowledged that the free energy profile between two minima in biomolecular processes is inherently not smooth. In this article, we discuss a theoretical model with a parabolic rough potential barrier and obtain analytical results of the transition path distribution and mean transition path times by incorporating absorbing boundary conditions across the boundaries under the driving of Gaussian white noise. Further, the influence of anomalous dynamics in rough potential driven by a power-law memory kernel is analyzed by deriving a time-dependent scaled diffusion coefficient that coarse-grains the effects of roughness, and the system's dynamics is reduced to a scaled diffusion on a smooth potential. Our theoretical results are tested and validated against numerical simulations. The findings of our study show the influence of the boundary conditions, barrier height, barrier roughness, and memory effect on the transition path time distributions in a rough potential, and the validity of the scaling diffusion coefficient has been discussed.
Collapse
Affiliation(s)
- Pankaj Jangid
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
4
|
Zheng X, Li Y, Kurths J, Xu Y. Noise-induced stochastic switching of microcargoes transport in artificial microtubule. CHAOS (WOODBURY, N.Y.) 2024; 34:091101. [PMID: 39236109 DOI: 10.1063/5.0226188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Synchronization plays an important role in propelling microrobots, especially for those driven by an external magnetic field. Here, we substantially contribute to the understanding of a novel out-of-sync phenomenon called "slip-out", which has been recently discovered in experiments of an artificial microtubule (AMT). In a deterministic situation, we interpret and quantitatively characterize the switching in such a system between the stick and slip modes, whose different combinations over time define four long-term states. The stick-and-slip state is the most typical "slip-out" state with periodic switching, caused by both the phase lock between the microrod and the magnetic field, and the time-dependent magnetic moment. We then illustrate that thermal noise leads to stochastic switching by stimulating the phase difference across a specific threshold randomly. Finally, we reproduce the average velocity simulatively, which is highly consistent with real experiments. Importantly, the nearly permanent slip state is probed by our analysis of long-term states rather than observing real experiments. The investigation supports the design and operational strategies of AMT and other microrobots driven by magnetic fields.
Collapse
Affiliation(s)
- Xinwei Zheng
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongge Li
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany
- Department of Physics, Humboldt University Berlin, Berlin 12489, Germany
| | - Yong Xu
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
- MOE Key Laboratory for Complexity Science in Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Zhang T, Jin Y, Xu Y, Yue X. Dynamical response and vibrational resonance of a tri-stable energy harvester interfaced with a standard rectifier circuit. CHAOS (WOODBURY, N.Y.) 2022; 32:093150. [PMID: 36182351 DOI: 10.1063/5.0105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
This paper investigates the dynamical response and vibrational resonance (VR) of a piecewise electromechanically coupled tri-stable energy harvester (TEH), which is driven by dual-frequency harmonic excitations. To achieve a stable DC output, the TEH is interfaced with a standard rectifier circuit. Using the harmonic balance method combined with the separation of fast and slow variables, a steady-state response together with the analytical expressions of displacement and harvested power is derived. The multi-solution feature in the amplitude-frequency response is observed and can improve the harvesting performance of the TEH under a low-frequency environment. There is an optimal time constant ratio and electromechanical coupled coefficient to maximize the harvested DC power. Meanwhile, the VR phenomenon of the TEH is explored through the response amplitude of the low-frequency input signal, which implies that an appropriate combination can induce the occurrence of VR and improve the rectified voltage. Similarly, the nonlinear stiffness coefficients can be adjusted by changing the magnet distance to induce the appearance of VR. The theoretical solutions are well supported by numerical simulation and experimental verification. Specifically, the theoretical analysis and experimental evidence illustrate that the harvested power under the VR effect is much higher than that without VR.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China
| | - Yanfei Jin
- Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China
| | - Yong Xu
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaole Yue
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
6
|
Luo Y, Zeng C, Huang T, Ai BQ. Anomalous transport tuned through stochastic resetting in the rugged energy landscape of a chaotic system with roughness. Phys Rev E 2022; 106:034208. [PMID: 36266857 DOI: 10.1103/physreve.106.034208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Stochastic resetting causes kinetic phase transitions, whereas its underlying physical mechanism remains to be elucidated. We here investigate the anomalous transport of a particle moving in a chaotic system with a stochastic resetting and a rough potential and focus on how the stochastic resetting, roughness, and nonequilibrium noise affect the transports of the particle. We uncover the physical mechanism for stochastic resetting resulting in the anomalous transport in a nonlinear chaotic system: The particle is reset to a new basin of attraction which may be different from the initial basin of attraction from the view of dynamics. From the view of the energy landscape, the particle is reset to a new energy state of the energy landscape which may be different from the initial energy state. This resetting can lead to a kinetic phase transition between no transport and a finite net transport or between negative mobility and positive mobility. The roughness and noise also lead to the transition. Based on the mechanism, the transport of the particle can be tuned by these parameters. For example, the combination of the stochastic resetting, roughness, and noise can enhance the transport and tune negative mobility, the enhanced stability of the system, and the resonant-like activity. We analyze these results through variances (e.g., mean-squared velocity, etc.) and correlation functions (i.e., velocity autocorrelation function, position-velocity correlation function, etc.). Our results can be extensively applied in the biology, physics, and chemistry, even social system.
Collapse
Affiliation(s)
- Yuhui Luo
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
- School of Physics and Information Engineering, Zhaotong University, Zhaotong 657000, China
| | - Chunhua Zeng
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Huang
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement, SPTE, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
7
|
Stationary Probability Density Analysis for the Randomly Forced Phytoplankton–Zooplankton Model with Correlated Colored Noises. MATHEMATICS 2022. [DOI: 10.3390/math10142383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this paper, we propose a stochastic phytoplankton–zooplankton model driven by correlated colored noises, which contains both anthropogenic and natural toxins. Using Khasminskii transformation and the stochastic averaging method, we first transform the original system into an Itô diffusion system. Afterwards, we derive the stationary probability density of the averaging amplitude equation by utilizing the corresponding Fokker–Planck–Kolmogorov equation. Then, the stability of the averaging amplitude is studied and the joint probability density of the original two-dimensional system is given. Finally, the theoretical results are verified by numerical simulations, and the effects of noise characteristics and toxins on system dynamics are further illustrated.
Collapse
|
8
|
Garain K, Sarathi Mandal P. Stochastic sensitivity analysis and early warning signals of critical transitions in a tri-stable prey-predator system with noise. CHAOS (WOODBURY, N.Y.) 2022; 32:033115. [PMID: 35364818 DOI: 10.1063/5.0074242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Near a tipping point, small changes in a certain parameter cause an irreversible shift in the behavior of a system, called critical transitions. Critical transitions can be observed in a variety of complex dynamical systems, ranging from ecology to financial markets, climate change, molecular bio-systems, health, and disease. As critical transitions can occur suddenly and are hard to manage, it is important to predict their occurrence. Although it is very tough to predict such critical transitions, various recent works suggest that generic early warning signals can detect the situation when systems approach a critical point. The most important indicator that predicts the risk of an upcoming critical transition is critical slowing down (CSD). CSD indicates a slow recovery rate from external perturbations of the stable state close to a bifurcation point. In this contribution, we study a two dimensional prey-predator model. Without any noise, the prey-predator model shows bistability and tri-stability due to the Allee effect in predators. We explore the critical transitions when external noise is added to the prey-predator system. We investigate early warning indicators, e.g., recovery rate, lag-1 autocorrelation, variance, and skewness to predict the critical transition. We explore the confidence domain method using the stochastic sensitivity function (SSF) technique near a stable equilibrium point to find a threshold value of noise intensity for a transition. The SSF technique in a two stage transition through confidence ellipse is described. We also show that the possibility of a transition to the predator-free state is independent of initial conditions. Our result may serve as a paradigm to understand and predict the critical transition in a two dimensional system.
Collapse
Affiliation(s)
- Koushik Garain
- Department of Mathematics, NIT Patna, Patna, Bihar 800005, India
| | | |
Collapse
|
9
|
Wei W, Hu J, Chen J, Duan J. Most probable transitions from metastable to oscillatory regimes in a carbon cycle system. CHAOS (WOODBURY, N.Y.) 2021; 31:121102. [PMID: 34972321 DOI: 10.1063/5.0073427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Global climate changes are related to the ocean's store of carbon. We study a carbonate system of the upper ocean, which has metastable and oscillatory regimes, under small random fluctuations. We calculate the most probable transition path via a geometric minimum action method in the context of the large deviation theory. By examining the most probable transition paths from metastable to oscillatory regimes for various external carbon input rates, we find two different transition patterns, which gives us an early warning sign for the dramatic change in the carbonate state of the ocean.
Collapse
Affiliation(s)
- Wei Wei
- Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianyu Hu
- Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianyu Chen
- Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jinqiao Duan
- Department of Applied Mathematics and Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
10
|
Yang H, Xu G, Wang H. Effects of magnetic fields on stochastic resonance in Hodgkin-Huxley neuronal network driven by Gaussian noise and non-Gaussian noise. Cogn Neurodyn 2021; 16:707-717. [DOI: 10.1007/s11571-021-09734-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
|
11
|
Dybiec B, Capała K, Barbasz J. Physics of free climbing. Phys Rev E 2021; 103:062135. [PMID: 34271740 DOI: 10.1103/physreve.103.062135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/02/2021] [Indexed: 11/07/2022]
Abstract
The theory of stochastic processes provides theoretical tools which can be efficiently used to explore the properties of noise-induced escape kinetics. Since noise-facilitated escape over the potential barrier resembles free climbing, one can use the first-passage time theory in an analysis of rock climbing. We perform the analysis of the mean first-passage time in order to answer the question regarding the optimal, i.e., resulting in the fastest climbing, rope length. It is demonstrated that there is a discrete set of favorable rope lengths assuring the shortest climbing times, as they correspond to local minima of mean first-passage time. Within the set of favorable rope lengths there is the optimal rope giving rise to the shortest climbing time. In particular, more experienced climbers can decrease their climbing time by using longer ropes.
Collapse
Affiliation(s)
- Bartłomiej Dybiec
- Institute of Theoretical Physics, Department of Statistical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Karol Capała
- Institute of Theoretical Physics, Department of Statistical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Jakub Barbasz
- J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| |
Collapse
|
12
|
Song Y, Ning L. Transport of coupled particles in rough ratchet driven by Lévy noise. CHAOS (WOODBURY, N.Y.) 2021; 31:033104. [PMID: 33810744 DOI: 10.1063/5.0027116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
This paper studies the transport of coupled particles in a tilted rough ratchet potential. The relationship between particles transport and roughness, noise intensity, external force, coupling strength, and free length is explored numerically by calculating the average velocity of coupled particles. Related investigations have found that rough potential can accelerate the process of crossing the barrier by increasing the particles velocity compared with smooth potential. It is based on the fact that the roughness on the potential surface is like a "ladder," which helps particles climb up and blocks them from sliding down. Moreover, superimposing an appropriate external force on the coupled particles or strengthening the Lévy noise leads to the particles velocity to increase. It is worth emphasizing that when the external force is selected properly, an optimal roughness can be found to maximize the particles velocity. For a given roughness, an optimal coupling coefficient is discovered to match the maximum velocity. And once the coupling coefficient is greater than the optimal value, the particles velocity drops sharply to zero. Furthermore, our results also indicate that choosing an appropriate free length between particles can also speed up transport.
Collapse
Affiliation(s)
- Yao Song
- School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Lijuan Ning
- School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
13
|
Capała K, Padash A, Chechkin AV, Shokri B, Metzler R, Dybiec B. Lévy noise-driven escape from arctangent potential wells. CHAOS (WOODBURY, N.Y.) 2020; 30:123103. [PMID: 33380056 DOI: 10.1063/5.0021795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
The escape from a potential well is an archetypal problem in the study of stochastic dynamical systems, representing real-world situations from chemical reactions to leaving an established home range in movement ecology. Concurrently, Lévy noise is a well-established approach to model systems characterized by statistical outliers and diverging higher order moments, ranging from gene expression control to the movement patterns of animals and humans. Here, we study the problem of Lévy noise-driven escape from an almost rectangular, arctangent potential well restricted by two absorbing boundaries, mostly under the action of the Cauchy noise. We unveil analogies of the observed transient dynamics to the general properties of stationary states of Lévy processes in single-well potentials. The first-escape dynamics is shown to exhibit exponential tails. We examine the dependence of the escape on the shape parameters, steepness, and height of the arctangent potential. Finally, we explore in detail the behavior of the probability densities of the first-escape time and the last-hitting point.
Collapse
Affiliation(s)
- Karol Capała
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Amin Padash
- Department of Physics, Shahid Beheshti University, 19839-69411 Tehran, Iran
| | - Aleksei V Chechkin
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Babak Shokri
- Department of Physics, Shahid Beheshti University, 19839-69411 Tehran, Iran
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Bartłomiej Dybiec
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
14
|
Xu Y, Zhang H, Li Y, Zhou K, Liu Q, Kurths J. Solving Fokker-Planck equation using deep learning. CHAOS (WOODBURY, N.Y.) 2020; 30:013133. [PMID: 32013470 DOI: 10.1063/1.5132840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The probability density function of stochastic differential equations is governed by the Fokker-Planck (FP) equation. A novel machine learning method is developed to solve the general FP equations based on deep neural networks. The proposed algorithm does not require any interpolation and coordinate transformation, which is different from the traditional numerical methods. The main novelty of this paper is that penalty factors are introduced to overcome the local optimization for the deep learning approach, and the corresponding setting rules are given. Meanwhile, we consider a normalization condition as a supervision condition to effectively avoid that the trial solution is zero. Several numerical examples are presented to illustrate performances of the proposed algorithm, including one-, two-, and three-dimensional systems. All the results suggest that the deep learning is quite feasible and effective to calculate the FP equation. Furthermore, influences of the number of hidden layers, the penalty factors, and the optimization algorithm are discussed in detail. These results indicate that the performances of the machine learning technique can be improved through constructing the neural networks appropriately.
Collapse
Affiliation(s)
- Yong Xu
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hao Zhang
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongge Li
- Center for Mathematical Sciences and School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kuang Zhou
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qi Liu
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany
| |
Collapse
|
15
|
Cai R, He Z, Liu Y, Duan J, Kurths J, Li X. Effects of Lévy noise on the Fitzhugh–Nagumo model: A perspective on the maximal likely trajectories. J Theor Biol 2019; 480:166-174. [DOI: 10.1016/j.jtbi.2019.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022]
|
16
|
Li Y, Xu Y, Kurths J, Duan J. The influences of correlated spatially random perturbations on first passage time in a linear-cubic potential. CHAOS (WOODBURY, N.Y.) 2019; 29:101102. [PMID: 31675827 DOI: 10.1063/1.5116626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The influences of correlated spatially random perturbations (SRPs) on the first passage problem are studied in a linear-cubic potential with a time-changing external force driven by a Gaussian white noise. First, the escape rate in the absence of SRPs is obtained by Kramers' theory. For the random potential case, we simplify the escape rate by multiplying the escape rate of smooth potentials with a specific coefficient, which is to evaluate the influences of randomness. Based on this assumption, the escape rates are derived in two scenarios, i.e., small/large correlation lengths. Consequently, the first passage time distributions (FPTDs) are generated for both smooth and random potential cases. We find that the position of the maximal FPTD has a very good agreement with that of numerical results, which verifies the validity of the proposed approximations. Besides, with increasing the correlation length, the FPTD shifts to the left gradually and tends to the smooth potential case. Second, we investigate the most probable passage time (MPPT) and mean first passage time (MFPT), which decrease with increasing the correlation length. We also find that the variation ranges of both MPPT and MFPT increase nonlinearly with increasing the intensity. Besides, we briefly give constraint conditions to guarantee the validity of our approximations. This work enables us to approximately evaluate the influences of the correlation length of SRPs in detail, which was always ignored previously.
Collapse
Affiliation(s)
- Yongge Li
- Center for Mathematical Sciences & School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong Xu
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jürgen Kurths
- Center for Mathematical Sciences & School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinqiao Duan
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
17
|
Xu Y, Mei R, Li Y, Kurths J. Particle Transport in a Confined Ratchet Driven by the Colored Noise. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-15096-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
18
|
Lin YT, Buchler NE. Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes. J R Soc Interface 2019; 15:rsif.2017.0804. [PMID: 29386401 PMCID: PMC5805981 DOI: 10.1098/rsif.2017.0804] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/08/2018] [Indexed: 11/12/2022] Open
Abstract
Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the properties of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Last, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site.
Collapse
Affiliation(s)
- Yen Ting Lin
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA .,School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Nicolas E Buchler
- Department of Physics, Duke University, Durham, NC 27708, USA.,Department of Biology, Duke University, Durham, NC 27708, USA.,Center for Genomic and Computational Biology, Durham, NC 27710, USA
| |
Collapse
|
19
|
Li Y, Xu Y, Kurths J. First-passage-time distribution in a moving parabolic potential with spatial roughness. Phys Rev E 2019; 99:052203. [PMID: 31212431 DOI: 10.1103/physreve.99.052203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 06/09/2023]
Abstract
In this paper, we investigate the first-passage-time distribution (FPTD) within a time-dependent parabolic potential in the presence of roughness with two methods: the Kramers theory and a nonsingular integral equation. By spatially averaging, the rough potential is equivalent to the combination of an effective smooth potential and an effective diffusion coefficient. Based on the Kramers theory, we first obtain Kramers approximations (KAs) of FPTD for both smooth and rough potentials. As expected, KA is valid only for high barriers and small external forces, and generally applicable for high barriers in rough potentials. To overcome the shortcoming of KA, a probability asymptotic approximation (PAA) based on an integral equation is proposed, which uses the transient probability density function (PDF) of the natural boundary conditions instead of the absorbing boundary conditions. We find that PAA fits very well even for large external forces. This enables us to analytically solve the FPTD for large external forces and low barriers as a strong extension to KA. In addition, we show that in the presence of a rough potential, the PAA of FPTD is in good agreement with numerical simulations for low barrier potentials. The PAA makes it possible to investigate the first-passage problem with ultrafast varying potentials and short exiting time. Thus, KA and PAA are complementary in determining the FPTD both for various barriers and external forces. Finally, the mean first-passage time (MFPT) is studied, which illustrates that the PAA of MFPT is effective almost in the whole range of external forces, while the KA of MFPT is valid only for small external forces.
Collapse
Affiliation(s)
- Yongge Li
- Center for Mathematical Sciences & School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong Xu
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany
- Human and Animal Physiology Department, Saratov State University, Saratov 410000, Russia
| |
Collapse
|
20
|
Xu P, Jin Y, Xiao S. Stochastic resonance in a delayed triple-well potential driven by correlated noises. CHAOS (WOODBURY, N.Y.) 2017; 27:113109. [PMID: 29195325 DOI: 10.1063/1.4994638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we investigate stochastic resonance (SR) in a delayed triple-well potential subject to correlated noises and a harmonic signal. The stationary probability density, together with the response amplitude of the system, is obtained by using the small time delay approximation. It is found that the time delay, noise intensities, and the cross-correlation between noises can induce the occurrence of the transition. Moreover, the appropriate choice of noise intensities and time delay can improve the output of the system, enhance the SR effect, and lead to the phenomenon of noise enhanced stability. Especially, the stochastic multi-resonance phenomenon is observed when the multiplicative and additive noises are correlated. Finally, the theoretical results are well verified through numerical simulations.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China
| | - Yanfei Jin
- Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China
| | - Shaomin Xiao
- Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
21
|
Li Y, Xu Y, Kurths J. Roughness-enhanced transport in a tilted ratchet driven by Lévy noise. Phys Rev E 2017; 96:052121. [PMID: 29347800 DOI: 10.1103/physreve.96.052121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The enhanced transport of particles by roughness in a tilted rough ratchet potential subject to a Lévy noise is investigated in this paper. Due to the roughness, the transport process exhibits quite different properties compared to the smooth case. We find that the roughness on the potential wall functions like a ladder to provide the convenience for particles to climb up but hinder them to slide down. The mean first passage time from one well to its right adjacent well and the mean velocity are, respectively, calculated versus the roughness, the external force, and the Lévy stability index. Our results show that the roughness is able to induce an enhancement on the mean velocity of particles and accelerate the barrier crossing process. The general conditions require a small external force and a small Lévy stability index. We find that with increasing external forces, the enhancement areas of roughness and Lévy stability index both shrink. However, for the Lévy stability index within the enhancement area, its increase will enlarge the enhancement area of roughness. On the contrary, under the same conditions we observe that for a Gaussian noise the roughness always reduces the corresponding mean velocity which is very different from the case of Lévy noise.
Collapse
Affiliation(s)
- Yongge Li
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yong Xu
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
- Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany
- Department of Physics, Humboldt University Berlin, 12489 Berlin, Germany
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany
- Department of Physics, Humboldt University Berlin, 12489 Berlin, Germany
| |
Collapse
|
22
|
Li Y, Xu Y, Kurths J, Yue X. Transports in a rough ratchet induced by Lévy noises. CHAOS (WOODBURY, N.Y.) 2017; 27:103102. [PMID: 29092429 DOI: 10.1063/1.4996264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study the transport of a particle subjected to a Lévy noise in a rough ratchet potential which is constructed by superimposing a fast oscillating trigonometric function on a common ratchet background. Due to the superposition of roughness, the transport process exhibits significantly different properties under the excitation of Lévy noises compared to smooth cases. The influence of the roughness on the directional motion is explored by calculating the mean velocities with respect to the Lévy stable index α and the spatial asymmetry parameter q of the ratchet. Variations in the splitting probability have been analyzed to illustrate how roughness affects the transport. In addition, we have examined the influences of roughness on the mean first passage time to know when it accelerates or slows down the first passage process. We find that the roughness can lead to a fast reduction of the absolute value of the mean velocity for small α, however the influence is small for large α. We have illustrated that the ladder-like roughness on the potential wall increases the possibility for particles to cross the gentle side of the ratchet, which results in an increase of the splitting probability to right for the right-skewed ratchet potential. Although the roughness increases the corresponding probability, it does not accelerate the mean first passage process to the right adjacent well. Our results show that the influences of roughness on the mean first passage time are sensitive to the combination of q and α. Hence, the proper q and α can speed up the passage process, otherwise it will slow down it.
Collapse
Affiliation(s)
- Yongge Li
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yong Xu
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juergen Kurths
- Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany
| | - Xiaole Yue
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
23
|
Wu J, Xu Y, Wang H, Kurths J. Information-based measures for logical stochastic resonance in a synthetic gene network under Lévy flight superdiffusion. CHAOS (WOODBURY, N.Y.) 2017; 27:063105. [PMID: 28679222 DOI: 10.1063/1.4984806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate the logical information transmission of a synthetic gene network under Lévy flight superdiffusion by an information-based methodology. We first present the stochastic synthetic gene network model driven by a square wave signal under Lévy noise caused by Lévy flight superdiffusion. Then, to quantify the potential of logical information transmission and logical stochastic resonance, we theoretically obtain an information-based methodology of the symbol error rate, the noise entropy, and the mutual information of the logical information transmission. Consequently, based on the complementary "on" and "off" states shown in the logical information transmission for the repressive proteins, we numerically calculate the symbol error rate for logic gates, which demonstrate that the synthetic gene network under Lévy noise can achieve some logic gates as well as logical stochastic resonance. Furthermore, we calculate the noise entropy and the mutual information between the square wave signal and the logical information transmission, which reveal and quantify the potential of logical information transmission and logical stochastic resonance. In addition, we analyze the synchronization degree of the mutual information for the accomplished logical stochastic resonance of two repressive proteins of the synthetic gene network by synchronization variances, which shows that those mutual information changes almost synchronously.
Collapse
Affiliation(s)
- Juan Wu
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yong Xu
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haiyan Wang
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany
| |
Collapse
|
24
|
Lévy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS One 2017; 12:e0174330. [PMID: 28358824 PMCID: PMC5373605 DOI: 10.1371/journal.pone.0174330] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/07/2017] [Indexed: 12/02/2022] Open
Abstract
As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected.
Collapse
|