1
|
Rappel WJ, Krummen DE, Baykaner T, Zaman J, Donsky A, Swarup V, Miller JM, Narayan SM. Stochastic termination of spiral wave dynamics in cardiac tissue. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:809532. [PMID: 36187938 PMCID: PMC9524168 DOI: 10.3389/fnetp.2022.809532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rotating spiral waves are self-organized features in spatially extended excitable media and may play an important role in cardiac arrhythmias including atrial fibrillation (AF). In homogeneous media, spiral wave dynamics are perpetuated through spiral wave breakup, leading to the continuous birth and death of spiral waves, but have a finite probability of termination. In non-homogeneous media, however, heterogeneities can act as anchoring sources that result in sustained spiral wave activity. It is thus unclear how and if AF may terminate following the removal of putative spiral wave sources in patients. Here, we address this question using computer simulations in which a stable spiral wave is trapped by an heterogeneity and is surrounded by spiral wave breakup. We show that, following ablation of spatial heterogeneity to render that region of the medium unexcitable, termination of spiral wave dynamics is stochastic and Poisson-distributed. Furthermore, we show that the dynamics can be accurately described by a master equation using birth and death rates. To validate these predictions in vivo, we mapped spiral wave activity in patients with AF and targeted the locations of spiral wave sources using radiofrequency ablation. Targeted ablation was indeed able to terminate AF, but only after a variable delay of up to several minutes. Furthermore, and consistent with numerical simulations, termination was not accompanied by gradual temporal or spatial organization. Our results suggest that spiral wave sources and tissue heterogeneities play a critical role in the maintenance of AF and that the removal of sources results in spiral wave dynamics with a finite termination time, which could have important clinical implications.
Collapse
Affiliation(s)
| | | | - Tina Baykaner
- Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California
| | - Junaid Zaman
- Department of Medicine, Division of Cardiology, University of Southern California, Los Angeles, California
| | | | - Vijay Swarup
- Arizona Heart Rhythm Institute, Phoenix, Arizona
| | - John M Miller
- Krannert Institute, Indiana University, Indianapolis, Indiana
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California
| |
Collapse
|
2
|
Li QH, Van Nieuwenhuyse E, Xia YX, Pan JT, Duytschaever M, Knecht S, Vandersickel N, Zhou C, Panfilov AV, Zhang H. Finding type and location of the source of cardiac arrhythmias from the averaged flow velocity field using the determinant-trace method. Phys Rev E 2021; 104:064401. [PMID: 35030872 DOI: 10.1103/physreve.104.064401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Life threatening cardiac arrhythmias result from abnormal propagation of nonlinear electrical excitation waves in the heart. Finding the locations of the sources of these waves remains a challenging problem. This is mainly due to the low spatial resolution of electrode recordings of these waves. Also, these recordings are subjected to noise. In this paper, we develop a different approach: the AFV-DT method based on an averaged flow velocity (AFV) technique adopted from the analysis of optical flows and the determinant-trace (DT) method used for vector field analysis of dynamical systems. This method can find the location and determine all important types of sources found in excitable media such as focal activity, spiral waves, and waves rotating around obstacles. We test this method on in silico data of various wave excitation patterns obtained using the Luo-Rudy model for cardiac tissue. We show that the method works well for data with low spatial resolutions (up to 8×8) and is stable against noise. Finally, we apply it to two clinical cases and show that it can correctly identify the arrhythmia type and location. We discuss further steps on the development and improvement of this approach.
Collapse
Affiliation(s)
- Qi-Hao Li
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | | | - Yuan-Xun Xia
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jun-Ting Pan
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | | | | | - Nele Vandersickel
- Department of Physics and Astronomy, Ghent University, Ghent 9000, Belgium
| | - Changsong Zhou
- Department of Physics, Zhejiang University, Hangzhou 310027, China
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Research Centre, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China
- Beijing Computational Science Research Center, Beijing 100084, China
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Ghent 9000, Belgium
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg 620002, Russia
- World-Class Research Center "Digital biodesign and personalized healthcare," Sechenov University, Moscow 119146, Russia
| | - Hong Zhang
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Bhatia NK, Rogers AJ, Krummen DE, Hossainy S, Sauer W, Miller JM, Alhusseini MI, Peszek A, Armenia E, Baykaner T, Brachmann J, Turakhia MP, Clopton P, Wang PJ, Rappel WJ, Narayan SM. Termination of persistent atrial fibrillation by ablating sites that control large atrial areas. Europace 2020; 22:897-905. [PMID: 32243508 PMCID: PMC7273336 DOI: 10.1093/europace/euaa018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/06/2020] [Indexed: 11/14/2022] Open
Abstract
AIMS Persistent atrial fibrillation (AF) has been explained by multiple mechanisms which, while they conflict, all agree that more disorganized AF is more difficult to treat than organized AF. We hypothesized that persistent AF consists of interacting organized areas which may enlarge, shrink or coalesce, and that patients whose AF areas enlarge by ablation are more likely to respond to therapy. METHODS AND RESULTS We mapped vectorial propagation in persistent AF using wavefront fields (WFF), constructed from raw unipolar electrograms at 64-pole basket catheters, during ablation until termination (Group 1, N = 20 patients) or cardioversion (Group 2, N = 20 patients). Wavefront field mapping of patients (age 61.1 ± 13.2 years, left atrium 47.1 ± 6.9 mm) at baseline showed 4.6 ± 1.0 organized areas, each separated by disorganization. Ablation of sites that led to termination controlled larger organized area than competing sites (44.1 ± 11.1% vs. 22.4 ± 7.0%, P < 0.001). In Group 1, ablation progressively enlarged unablated areas (rising from 32.2 ± 15.7% to 44.1 ± 11.1% of mapped atrium, P < 0.0001). In Group 2, organized areas did not enlarge but contracted during ablation (23.6 ± 6.3% to 15.2 ± 5.6%, P < 0.0001). CONCLUSION Mapping wavefront vectors in persistent AF revealed competing organized areas. Ablation that progressively enlarged remaining areas was acutely successful, and sites where ablation terminated AF were surrounded by large organized areas. Patients in whom large organized areas did not emerge during ablation did not exhibit AF termination. Further studies should define how fibrillatory activity is organized within such areas and whether this approach can guide ablation.
Collapse
Affiliation(s)
- Neal K Bhatia
- Department of Medicine and Cardiovascular Institute, Stanford University, 780 Welch Road, MC 5773, Stanford, CA 94305, USA
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Albert J Rogers
- Department of Medicine and Cardiovascular Institute, Stanford University, 780 Welch Road, MC 5773, Stanford, CA 94305, USA
| | - David E Krummen
- Department of Medicine, University of California, San Diego, CA, USA
| | - Samir Hossainy
- Department of Medicine and Cardiovascular Institute, Stanford University, 780 Welch Road, MC 5773, Stanford, CA 94305, USA
| | - William Sauer
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - John M Miller
- Department of Medicine, University of Indiana, Indianapolis, IN, USA
| | - Mahmood I Alhusseini
- Department of Medicine and Cardiovascular Institute, Stanford University, 780 Welch Road, MC 5773, Stanford, CA 94305, USA
| | - Adam Peszek
- Department of Medicine, University of Colorado, Denver, CO, USA
| | - Erin Armenia
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Tina Baykaner
- Department of Medicine and Cardiovascular Institute, Stanford University, 780 Welch Road, MC 5773, Stanford, CA 94305, USA
| | | | - Mintu P Turakhia
- Department of Medicine, Veterans Affairs Palo Alto, Palo Alto, CA, USA
| | - Paul Clopton
- Department of Medicine and Cardiovascular Institute, Stanford University, 780 Welch Road, MC 5773, Stanford, CA 94305, USA
| | - Paul J Wang
- Department of Medicine and Cardiovascular Institute, Stanford University, 780 Welch Road, MC 5773, Stanford, CA 94305, USA
| | | | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, 780 Welch Road, MC 5773, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Leef G, Shenasa F, Bhatia NK, Rogers AJ, Sauer W, Miller JM, Swerdlow M, Tamboli M, Alhusseini MI, Armenia E, Baykaner T, Brachmann J, Turakhia MP, Atienza F, Rappel WJ, Wang PJ, Narayan SM. Wavefront Field Mapping Reveals a Physiologic Network Between Drivers Where Ablation Terminates Atrial Fibrillation. Circ Arrhythm Electrophysiol 2019; 12:e006835. [PMID: 31352796 DOI: 10.1161/circep.118.006835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Localized drivers are proposed mechanisms for persistent atrial fibrillation (AF) from optical mapping of human atria and clinical studies of AF, yet are controversial because drivers fluctuate and ablating them may not terminate AF. We used wavefront field mapping to test the hypothesis that AF drivers, if concurrent, may interact to produce fluctuating areas of control to explain their appearance/disappearance and acute impact of ablation. METHODS We recruited 54 patients from an international registry in whom persistent AF terminated by targeted ablation. Unipolar AF electrograms were analyzed from 64-pole baskets to reconstruct activation times, map propagation vectors each 20 ms, and create nonproprietary phase maps. RESULTS Each patient (63.6±8.5 years, 29.6% women) showed 4.0±2.1 spatially anchored rotational or focal sites in AF in 3 patterns. First, a single (type I; n=7) or, second, paired chiral-antichiral (type II; n=5) rotational drivers controlled most of the atrial area. Ablation of 1 to 2 large drivers terminated all cases of types I or II AF. Third, interaction of 3 to 5 drivers (type III; n=42) with changing areas of control. Targeted ablation at driver centers terminated AF and required more ablation in types III versus I (P=0.02 in left atrium). CONCLUSIONS Wavefront field mapping of persistent AF reveals a pathophysiologic network of a small number of spatially anchored rotational and focal sites, which interact, fluctuate, and control varying areas. Future work should define whether AF drivers that control larger atrial areas are attractive targets for ablation.
Collapse
Affiliation(s)
- George Leef
- Department of Medicine, Stanford University, California (G.L., F.S., N.K.B., A.J.R., M.S., M.T., M.I.A., T.B., P.J.W., S.M.N.)
| | - Fatemah Shenasa
- Department of Medicine, Stanford University, California (G.L., F.S., N.K.B., A.J.R., M.S., M.T., M.I.A., T.B., P.J.W., S.M.N.)
| | - Neal K Bhatia
- Department of Medicine, Stanford University, California (G.L., F.S., N.K.B., A.J.R., M.S., M.T., M.I.A., T.B., P.J.W., S.M.N.)
| | - Albert J Rogers
- Department of Medicine, Stanford University, California (G.L., F.S., N.K.B., A.J.R., M.S., M.T., M.I.A., T.B., P.J.W., S.M.N.)
| | - William Sauer
- Department of Medicine, University of Colorado, Denver (W.S., E.A.)
| | - John M Miller
- Department of Medicine, University of Indiana, Indianapolis (J.M.M.)
| | - Mark Swerdlow
- Department of Medicine, Stanford University, California (G.L., F.S., N.K.B., A.J.R., M.S., M.T., M.I.A., T.B., P.J.W., S.M.N.)
| | - Mallika Tamboli
- Department of Medicine, Stanford University, California (G.L., F.S., N.K.B., A.J.R., M.S., M.T., M.I.A., T.B., P.J.W., S.M.N.)
| | - Mahmood I Alhusseini
- Department of Medicine, Stanford University, California (G.L., F.S., N.K.B., A.J.R., M.S., M.T., M.I.A., T.B., P.J.W., S.M.N.)
| | - Erin Armenia
- Department of Medicine, University of Colorado, Denver (W.S., E.A.)
| | - Tina Baykaner
- Department of Medicine, Stanford University, California (G.L., F.S., N.K.B., A.J.R., M.S., M.T., M.I.A., T.B., P.J.W., S.M.N.)
| | | | - Mintu P Turakhia
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, CA (M.P.T.)
| | - Felipe Atienza
- Departamento de Cardiologia, Hospital General Universitario Gregorio Maranon, Madrid, Spain (F.A.)
| | | | - Paul J Wang
- Department of Medicine, Stanford University, California (G.L., F.S., N.K.B., A.J.R., M.S., M.T., M.I.A., T.B., P.J.W., S.M.N.)
| | - Sanjiv M Narayan
- Department of Medicine, Stanford University, California (G.L., F.S., N.K.B., A.J.R., M.S., M.T., M.I.A., T.B., P.J.W., S.M.N.)
| |
Collapse
|
5
|
Swerdlow M, Tamboli M, Alhusseini MI, Moosvi N, Rogers AJ, Leef G, Wang PJ, Rillig A, Brachmann J, Sauer WH, Ruppersberg P, Narayan SM, Baykaner T. Comparing phase and electrographic flow mapping for persistent atrial fibrillation. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2019; 42:499-507. [PMID: 30882924 DOI: 10.1111/pace.13649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND An increasing number of methods are being used to map atrial fibrillation (AF), yet the sensitivity of identifying potential localized AF sources of these novel methods are unclear. Here, we report a comparison of two approaches to map AF based upon (1) electrographic flow mapping and (2) phase mapping in a multicenter registry of patients in whom ablation terminated persistent AF. METHODS Fifty-three consecutive patients with persistent AF in whom ablation terminated AF in an international multicenter registry were enrolled. Electrographic flow mapping (EGF) and phase mapping were applied to the multipolar simultaneous electrograms recorded from a 64-pole basket catheter in the chamber (left vs right atrium) where AF termination occurred. We analyzed if the mapping methods were able to detect localized sources at the AF termination site. We also analyzed global results of mapping AF for each method, patterns of activation of localized sources. RESULTS Patients were 64.3 ± 9.4 years old and 69.8% were male. EGF and phase mapping identified localized sources at AF termination sites in 81% and 83% of the patients, respectively. Methods were complementary and in only n = 2 (3.7%) neither method identified a source. Globally, EGF identified more localized sources than phase mapping (5.3 ± 2.8 vs 1.8 ± 0.5, P < 0.001), with a higher prevalence of focal (compared to rotational) activation pattern (49% vs 2%, P < 0.01). CONCLUSIONS EGF is a novel vectorial-based AF mapping method, which can detect sites of AF termination, agreeing with, and complementary to, an alternative AF mapping method using phase analysis.
Collapse
Affiliation(s)
- M Swerdlow
- Cardiovascular Medicine, Stanford University, Stanford, California
| | - M Tamboli
- Cardiovascular Medicine, Stanford University, Stanford, California
| | - M I Alhusseini
- Cardiovascular Medicine, Stanford University, Stanford, California
| | - N Moosvi
- Cardiovascular Medicine, Stanford University, Stanford, California
| | - A J Rogers
- Cardiovascular Medicine, Stanford University, Stanford, California
| | - G Leef
- Cardiovascular Medicine, Stanford University, Stanford, California
| | - P J Wang
- Cardiovascular Medicine, Stanford University, Stanford, California
| | - A Rillig
- Cardiology, Asklepios Klinik St. Georg, Hamburg, Germany
| | - J Brachmann
- Cardiology, II Medizinische Klinik Klinikum Coburg, Coburg, Germany
| | - W H Sauer
- Cardiology, University of Colorado at Denver and Health Sciences Center, Denver, Colorado
| | | | - S M Narayan
- Cardiovascular Medicine, Stanford University, Stanford, California
| | - T Baykaner
- Cardiovascular Medicine, Stanford University, Stanford, California
| |
Collapse
|
6
|
Dallet C, Roney C, Martin R, Kitamura T, Puyo S, Duchateau J, Dumas-Pomier C, Ravon G, Bear L, Derval N, Sacher F, Vigmond E, Haissaguerre M, Hocini M, Dubois R. Cardiac Propagation Pattern Mapping With Vector Field for Helping Tachyarrhythmias Diagnosis With Clinical Tridimensional Electro-Anatomical Mapping Tools. IEEE Trans Biomed Eng 2019; 66:373-382. [DOI: 10.1109/tbme.2018.2841340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|