1
|
Freixas VM, Keefer D, Tretiak S, Fernandez-Alberti S, Mukamel S. Ultrafast coherent photoexcited dynamics in a trimeric dendrimer probed by X-ray stimulated-Raman signals. Chem Sci 2022; 13:6373-6384. [PMID: 35733898 PMCID: PMC9159119 DOI: 10.1039/d2sc00601d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
The photoinduced ultrafast coherent inter-chromophore energy redistribution in a triarylamine trimer is explored using nonadiabatic excited state molecular dynamics followed by simulations of X-ray Raman signals. The nitrogencentered system ensures strong interchromophore interactions and, thus, the presence of coherences. Nevertheless, the multitude of non-deterministic photoinduced pathways during the ultrafast inter-branch migration of the excitation results in random confinement on some branches and, therefore, spatial exciton scrambling and loss of phase information at long times. We show that the vibronic coherence dynamics evolving into the incoherent scrambling mechanism on ultrafast 50 fs timescale, is accurately probed by the TRUECARS X-ray stimulated Raman signal. In combination with previous results, where the technique has revealed long-lived coherences in a rigid heterodimer, the signal is most valuable for detecting ultrafast molecular coherences or their absence. We demonstrate that X-ray Raman spectroscopy is a useful tool in the chemical design of functional molecular building blocks. The photoinduced ultrafast coherent inter-chromophore energy redistribution in a triarylamine trimer is explored using nonadiabatic excited state molecular dynamics followed by simulations of X-ray Raman signals.![]()
Collapse
Affiliation(s)
- Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Daniel Keefer
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | | | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| |
Collapse
|
2
|
Effects of symmetry breaking of the structurally-disordered Hamiltonian ensembles on the anisotropic decoherence of qubits. Sci Rep 2022; 12:2869. [PMID: 35190613 PMCID: PMC8861020 DOI: 10.1038/s41598-022-06891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
It is commonly known that the dephasing in open quantum systems is due to the establishment of bipartite correlations with ambient environments, which are typically difficult to be fully characterized. Recently, a new approach of average over disordered Hamiltonian ensemble is developed and shown to be capable of describing the nonclassicality of incoherent dynamics based on inferring the nonclassical nature of the correlations. Here we further extend the approach of Hamiltonian ensemble in the canonical form to the realm of structural disorder. Under the variable separation of the probability distribution within the Hamiltonian ensemble, the geometrical structure is easily visualized and can be characterized according to the degree of symmetry. We demonstrate four degrees and investigate the effects of different types of symmetry breaking on the incoherent dynamics. We show that these effects are easily understood from the emergences of additional terms in the master equations, leading to rather general master equations and, consequently, going beyond the previous frameworks of pure dephasing or isotropic depolarization.
Collapse
|
3
|
Canonical Hamiltonian ensemble representation of dephasing dynamics and the impact of thermal fluctuations on quantum-to-classical transition. Sci Rep 2021; 11:10046. [PMID: 33976361 PMCID: PMC8113319 DOI: 10.1038/s41598-021-89400-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/26/2021] [Indexed: 12/02/2022] Open
Abstract
An important mathematical tool for studying open quantum system theory, which studies the dynamics of a reduced system, is the completely positive and trace-preserving dynamical linear map parameterized by a special parameter-time. Counter-intuitively, akin to the Fourier transform of a signal in time-sequence to its frequency distribution, the time evolution of a reduced system can also be studied in the frequency domain. A recent proposed idea which studies the representation of dynamical processes in the frequency domain, referred to as canonical Hamiltonian ensemble representation (CHER), proved its capability of characterizing the noncalssical traits of the dynamics. Here we elaborate in detail the theoretical foundation within a unified framework and demonstrate several examples for further studies of its properties. In particular, we find that the thermal fluctuations are clearly manifested in the manner of broadening CHER, and consequently rendering the CHER less nonclassical. We also point out the discrepancy between the notions of nonclassicality and non-Markovianity, show multiple CHERs beyond pure dephasing, and, finally, to support the practical viability, propose an experimental realization based upon the free induction decay measurement of nitrogen-vacancy center in diamond.
Collapse
|
4
|
Freixas VM, Tretiak S, Makhov DV, Shalashilin DV, Fernandez-Alberti S. Vibronic Quantum Beating between Electronic Excited States in a Heterodimer. J Phys Chem B 2020; 124:3992-4001. [DOI: 10.1021/acs.jpcb.0c01685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. M. Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - S. Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - D. V. Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K
| | | | - S. Fernandez-Alberti
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| |
Collapse
|
5
|
Maguire H, Iles-Smith J, Nazir A. Environmental Nonadditivity and Franck-Condon physics in Nonequilibrium Quantum Systems. PHYSICAL REVIEW LETTERS 2019; 123:093601. [PMID: 31524488 DOI: 10.1103/physrevlett.123.093601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 06/10/2023]
Abstract
We show that for a quantum system coupled to both vibrational and electromagnetic environments, enforcing additivity of their combined influences results in nonequilibrium dynamics that does not respect the Franck-Condon principle. We overcome this shortcoming by employing a collective coordinate representation of the vibrational environment, which permits the derivation of a nonadditive master equation. When applied to a two-level emitter our treatment predicts decreasing photon emission rates with increasing vibrational coupling, consistent with Franck-Condon physics. In contrast, the additive approximation predicts the emission rate to be completely insensitive to vibrations. We find that nonadditivity also plays a key role in the stationary nonequilibrium model behavior, enabling two-level population inversion under incoherent electromagnetic excitation.
Collapse
Affiliation(s)
- Henry Maguire
- Photon Science Institute & School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jake Iles-Smith
- Photon Science Institute & School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Ahsan Nazir
- Photon Science Institute & School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
6
|
Holubec V, Novotný T. Effects of noise-induced coherence on the fluctuations of current in quantum absorption refrigerators. J Chem Phys 2019; 151:044108. [DOI: 10.1063/1.5096275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Viktor Holubec
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| | - Tomáš Novotný
- Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, CZ-121 16 Praha, Czech Republic
| |
Collapse
|
7
|
Wertnik M, Chin A, Nori F, Lambert N. Optimizing co-operative multi-environment dynamics in a dark-state-enhanced photosynthetic heat engine. J Chem Phys 2018; 149:084112. [PMID: 30193490 DOI: 10.1063/1.5040898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We analyze the role of coherent, non-perturbative system-bath interactions in a photosynthetic heat engine. Using the reaction-coordinate formalism to describe the vibrational phonon-environment in the engine, we analyze the efficiency around an optimal parameter regime predicted in earlier studies. We show that, in the limit of high-temperature photon irradiation, the phonon-assisted population transfer between bright and dark states is suppressed due to dephasing from the photon environment, even in the Markov limit where we expect the influence of each bath to have an independent and additive effect on the dynamics. Manipulating the phonon bath properties via its spectral density enables us to identify both optimal low- and high-frequency regimes where the suppression can be removed. This suppression of transfer and its removal suggests that it is important to consider carefully the non-perturbative and cooperative effects of system-bath environments in designing artificial photosynthetic systems and also that manipulating inter-environmental interactions could provide a new multidimensional "lever" by which photocells and other types of quantum devices can be optimized.
Collapse
Affiliation(s)
- Melina Wertnik
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Alex Chin
- Institut des NanoSciences de Paris, Sorbonne Université, 4 Place Jussieu, Bote Courrier 840, 75252 Paris Cedex 05, France
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Neill Lambert
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Thomas G, Siddharth N, Banerjee S, Ghosh S. Thermodynamics of non-Markovian reservoirs and heat engines. Phys Rev E 2018; 97:062108. [PMID: 30011487 DOI: 10.1103/physreve.97.062108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 06/08/2023]
Abstract
We show that non-Markovian effects of the reservoirs can be used as a resource to extract work from an Otto cycle. The state transformation under non-Markovian dynamics is achieved via a two-step process, namely an isothermal process using a Markovian reservoir followed by an adiabatic process. From second law of thermodynamics, we show that the maximum amount of extractable work from the state prepared under the non-Markovian dynamics quantifies a lower bound of non-Markovianity. We illustrate our ideas with an explicit example of non-Markovian evolution.
Collapse
Affiliation(s)
- George Thomas
- Optics and Quantum Information Group, The Institute of Mathematical Sciences, HBNI, CIT Campus, Taramani, Chennai 600113, India
| | - Nana Siddharth
- The Institute of Mathematical Sciences, HBNI, CIT Campus, Taramani, Chennai 600113, India
| | | | - Sibasish Ghosh
- Optics and Quantum Information Group, The Institute of Mathematical Sciences, HBNI, CIT Campus, Taramani, Chennai 600113, India
| |
Collapse
|
9
|
Dorfman KE, Xu D, Cao J. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence. Phys Rev E 2018; 97:042120. [PMID: 29758726 DOI: 10.1103/physreve.97.042120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Indexed: 06/08/2023]
Abstract
Quantum coherence has been demonstrated in various systems including organic solar cells and solid state devices. In this article, we report the lower and upper bounds for the performance of quantum heat engines determined by the efficiency at maximum power. Our prediction based on the canonical three-level Scovil and Schulz-Dubois maser model strongly depends on the ratio of system-bath couplings for the hot and cold baths and recovers the theoretical bounds established previously for the Carnot engine. Further, introducing a fourth level to the maser model can enhance the maximal power and its efficiency, thus demonstrating the importance of quantum coherence in the thermodynamics and operation of the heat engines beyond the classical limit.
Collapse
Affiliation(s)
- Konstantin E Dorfman
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Dazhi Xu
- Department of Physics and Center for Quantum Technology Research, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Beijing Computational Science Research Center, Beijing 100084, China
| |
Collapse
|