1
|
Li Z, Izumida Y. Decomposition of metric tensor in thermodynamic geometry in terms of relaxation timescales. Phys Rev E 2025; 111:034113. [PMID: 40247585 DOI: 10.1103/physreve.111.034113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Geometrical methods are extensively applied to thermodynamics, including stochastic thermodynamics. In the case of a slow-driving linear response regime, a geometrical framework, known as thermodynamic geometry, is established. The key to this framework is the thermodynamic length characterized by a metric tensor defined in the space of controlling variables. As the metric tensor is given in terms of the equilibrium time-correlation functions of the thermodynamic forces, it contains the information on timescales, which may be useful for analyzing the performance of heat engines. In this paper, we show that the metric tensor for underdamped Langevin dynamics can be decomposed in terms of the relaxation times of a system itself, which govern the timescales of the equilibrium time-correlation functions of the thermodynamic forces. As an application of the decomposition of the metric tensor, we demonstrate that it is possible to achieve Carnot efficiency at finite power by taking the vanishing limit of relaxation times without breaking trade-off relations between efficiency and power of heat engines in terms of thermodynamic geometry.
Collapse
Affiliation(s)
- Zhen Li
- The University of Tokyo, Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, Kashiwa 277-8561, Japan
| | - Yuki Izumida
- The University of Tokyo, Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, Kashiwa 277-8561, Japan
| |
Collapse
|
2
|
Zhong A, DeWeese MR. Beyond Linear Response: Equivalence between Thermodynamic Geometry and Optimal Transport. PHYSICAL REVIEW LETTERS 2024; 133:057102. [PMID: 39159082 DOI: 10.1103/physrevlett.133.057102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024]
Abstract
A fundamental result of thermodynamic geometry is that the optimal, minimal-work protocol that drives a nonequilibrium system between two thermodynamic states in the slow-driving limit is given by a geodesic of the friction tensor, a Riemannian metric defined on control space. For overdamped dynamics in arbitrary dimensions, we demonstrate that thermodynamic geometry is equivalent to L^{2} optimal transport geometry defined on the space of equilibrium distributions corresponding to the control parameters. We show that obtaining optimal protocols past the slow-driving or linear response regime is computationally tractable as the sum of a friction tensor geodesic and a counterdiabatic term related to the Fisher information metric. These geodesic-counterdiabatic optimal protocols are exact for parametric harmonic potentials, reproduce the surprising nonmonotonic behavior recently discovered in linearly biased double well optimal protocols, and explain the ubiquitous discontinuous jumps observed at the beginning and end times.
Collapse
Affiliation(s)
- Adrianne Zhong
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Werner P, Hartmann AK. Optimized finite-time work protocols for the Higgs RNA model with external force. Phys Rev E 2024; 109:044127. [PMID: 38755889 DOI: 10.1103/physreve.109.044127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/27/2024] [Indexed: 05/18/2024]
Abstract
The Higgs RNA model with an added term for a coupling to an external force is studied in regard to finite-time force-driving protocols with a minimal-work requirement. In this paper, RNA sequences which at low temperature exhibit hairpins are considered, which are often cited as typical template systems in stochastic thermodynamics. The optimized work protocols for this glassy many-particle system are determined numerically using the parallel tempering method. The protocols show distinct jumps at the beginning and end, which have been observed for single-particle systems and are proven to be optimal in the fast protocol limit generally. Optimality seems to be achieved by staying close to the equilibrium unfolding transition point, in agreement with experimental and theoretical observations. The change of work distributions, compared to those resulting from a naive linear driving protocol, are discussed generally and in terms of free energy estimation as well as the effect of optimized protocols on rare work process starting conditions.
Collapse
Affiliation(s)
- Peter Werner
- Institut für Physik, Universität Oldenburg, 26111 Oldenburg, Germany
| | | |
Collapse
|
4
|
Gupta D, Klapp SHL, Sivak DA. Efficient control protocols for an active Ornstein-Uhlenbeck particle. Phys Rev E 2023; 108:024117. [PMID: 37723713 DOI: 10.1103/physreve.108.024117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023]
Abstract
Designing a protocol to efficiently drive a stochastic system is an active field of research. Here we extend such control theory to an active Ornstein-Uhlenbeck particle (AOUP) in a bistable potential, driven by a harmonic trap. We find that protocols designed to minimize the excess work (up to linear response) perform better than naive protocols with constant velocity for a wide range of protocol durations.
Collapse
Affiliation(s)
- Deepak Gupta
- Nordita, Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
5
|
Salamon P, Andresen B, Nulton J, Roach TNF, Rohwer F. More Stages Decrease Dissipation in Irreversible Step Processes. ENTROPY (BASEL, SWITZERLAND) 2023; 25:539. [PMID: 36981427 PMCID: PMC10048515 DOI: 10.3390/e25030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
The dissipation in an irreversible step process is reduced when the number of steps is increased in any refinement of the steps in the process. This is a consequence of the ladder theorem, which states that, for any irreversible process proceeding by a sequence of relaxations, dividing any relaxation step into two will result in a new sequence that is more efficient than the original one. This results in a more-steps-the-better rule, even when the new sequence of steps is not reoptimized. This superiority of many steps is well established empirically in, e.g., insulation and separation applications. In particular, the fact that the division of any step into two steps improves the overall efficiency has interesting implications for biological evolution and emphasizes thermodynamic length as a central measure for dissipation.
Collapse
Affiliation(s)
- Peter Salamon
- Department of Mathematics, San Diego State University, San Diego, CA 92182, USA;
| | - Bjarne Andresen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| | - James Nulton
- Department of Mathematics, San Diego State University, San Diego, CA 92182, USA;
| | - Ty N. F. Roach
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; (T.N.F.R.); (F.R.)
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; (T.N.F.R.); (F.R.)
| |
Collapse
|
6
|
Abstract
F1-ATPase is a rotary molecular motor that in vivo is subject to strong nonequilibrium driving forces. There is great interest in understanding the operational principles governing its high efficiency of free-energy transduction. Here we use a near-equilibrium framework to design a nontrivial control protocol to minimize dissipation in rotating F1 to synthesize adenosine triphosphate. We find that the designed protocol requires much less work than a naive (constant-velocity) protocol across a wide range of protocol durations. Our analysis points to a possible mechanism for energetically efficient driving of F1 in vivo and provides insight into free-energy transduction for a broader class of biomolecular and synthetic machines.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, BerlinD-10623, Germany
| | - Steven J Large
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Shoichi Toyabe
- Department of Applied Physics, Tohoku University, Aoba 6-6-05, Sendai980-8579, Japan
| | - David A Sivak
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| |
Collapse
|
7
|
Kamizaki LP, Bonança MVS, Muniz SR. Performance of optimal linear-response processes in driven Brownian motion far from equilibrium. Phys Rev E 2022; 106:064123. [PMID: 36671193 DOI: 10.1103/physreve.106.064123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Considering the paradigmatic driven Brownian motion, we perform extensive numerical analysis on the performance of optimal linear-response processes far from equilibrium. We focus on the overdamped regime where exact optimal processes are known analytically and most experiments operate. This allows us to compare the optimal processes obtained in linear response and address their relevance to experiments using realistic parameter values from experiments with optical tweezers. Our results help assess the accuracy of perturbative methods in calculating the irreversible work for cases where the exact solution might be difficult to access. For that, we present a performance metric comparing the approximate optimal solution to the exact one. Our main result is that optimal linear-response processes can perform surprisingly well, even far from where they were expected.
Collapse
Affiliation(s)
- Lucas P Kamizaki
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil.,Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Marcus V S Bonança
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - Sérgio R Muniz
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
Zhong A, DeWeese MR. Limited-control optimal protocols arbitrarily far from equilibrium. Phys Rev E 2022; 106:044135. [PMID: 36397571 DOI: 10.1103/physreve.106.044135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Recent studies have explored finite-time dissipation-minimizing protocols for stochastic thermodynamic systems driven arbitrarily far from equilibrium, when granted full external control to drive the system. However, in both simulation and experimental contexts, systems often may only be controlled with a limited set of degrees of freedom. Here, going beyond slow- and fast-driving approximations employed in previous studies, we obtain exact finite-time optimal protocols for this limited-control setting. By working with deterministic Fokker-Planck probability density time evolution, we can frame the work-minimizing protocol problem in the standard form of an optimal control theory problem. We demonstrate that finding the exact optimal protocol is equivalent to solving a system of Hamiltonian partial differential equations, which in many cases admit efficiently calculable numerical solutions. Within this framework, we reproduce analytical results for the optimal control of harmonic potentials and numerically devise optimal protocols for two anharmonic examples: varying the stiffness of a quartic potential and linearly biasing a double-well potential. We confirm that these optimal protocols outperform other protocols produced through previous methods, in some cases by a substantial amount. We find that for the linearly biased double-well problem, the mean position under the optimal protocol travels at a near-constant velocity. Surprisingly, for a certain timescale and barrier height regime, the optimal protocol is also nonmonotonic in time.
Collapse
Affiliation(s)
- Adrianne Zhong
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA and Redwood Center For Theoretical Neuroscience and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
9
|
The Development of Single Molecule Force Spectroscopy: From Polymer Biophysics to Molecular Machines. Q Rev Biophys 2022; 55:e9. [PMID: 35916314 DOI: 10.1017/s0033583522000087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Blaber S, Sivak DA. Optimal control with a strong harmonic trap. Phys Rev E 2022; 106:L022103. [PMID: 36110009 DOI: 10.1103/physreve.106.l022103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Quadratic trapping potentials are widely used to experimentally probe biopolymers and molecular machines and drive transitions in steered molecular-dynamics simulations. Approximating energy landscapes as locally quadratic, we design multidimensional trapping protocols that minimize dissipation. The designed protocols are easily solvable and applicable to a wide range of systems. The approximation does not rely on either fast or slow limits and is valid for any duration provided the trapping potential is sufficiently strong. We demonstrate the utility of the designed protocols with a simple model of a periodically driven rotary motor. Our results elucidate principles of effective single-molecule manipulation and efficient nonequilibrium free-energy estimation.
Collapse
Affiliation(s)
- Steven Blaber
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
11
|
Louwerse MD, Sivak D. Multidimensional minimum-work control of a 2D Ising model. J Chem Phys 2022; 156:194108. [DOI: 10.1063/5.0086079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A system's configurational state can be manipulated using dynamic variation of control parameters, such as temperature, pressure, or magnetic field; for finite-duration driving, excess work is required above the equilibrium free-energy change. Minimum-work protocols in multidimensional control-parameter space have potential to significantly reduce work relative to one-dimensional control. By numerically minimizing a linear-response approximation to the excess work, we design protocols in control-parameter spaces of a 2D Ising model that efficiently drive the system from the all-down to all-up configuration. We find that such designed multidimensional protocols take advantage of more flexible control to avoid control-parameter regions of high system resistance, heterogeneously input and extract work to make use of system relaxation, and flatten the energy landscape, making accessible many configurations that would otherwise have prohibitively high energy and thus decreasing spin correlations. Relative to one-dimensional protocols, this speeds up the rate-limiting spin-inversion reaction, thereby keeping the system significantly closer to equilibrium for a wide range of protocol durations, and significantly reducing resistance and hence work.
Collapse
|
12
|
Wadia NS, Zarcone RV, DeWeese MR. Solution to the Fokker-Planck equation for slowly driven Brownian motion: Emergent geometry and a formula for the corresponding thermodynamic metric. Phys Rev E 2022; 105:034130. [PMID: 35428124 DOI: 10.1103/physreve.105.034130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Considerable progress has recently been made with geometrical approaches to understanding and controlling small out-of-equilibrium systems, but a mathematically rigorous foundation for these methods has been lacking. Towards this end, we develop a perturbative solution to the Fokker-Planck equation for one-dimensional driven Brownian motion in the overdamped limit enabled by the spectral properties of the corresponding single-particle Schrödinger operator. The perturbation theory is in powers of the inverse characteristic timescale of variation of the fastest varying control parameter, measured in units of the system timescale, which is set by the smallest eigenvalue of the corresponding Schrödinger operator. It applies to any Brownian system for which the Schrödinger operator has a confining potential. We use the theory to rigorously derive an exact formula for a Riemannian "thermodynamic" metric in the space of control parameters of the system. We show that up to second-order terms in the perturbation theory, optimal dissipation-minimizing driving protocols minimize the length defined by this metric. We also show that a previously proposed metric is calculable from our exact formula with corrections that are exponentially suppressed in a characteristic length scale. We illustrate our formula using the two-dimensional example of a harmonic oscillator with time-dependent spring constant in a time-dependent electric field. Lastly, we demonstrate that the Riemannian geometric structure of the optimal control problem is emergent; it derives from the form of the perturbative expansion for the probability density and persists to all orders of the expansion.
Collapse
Affiliation(s)
- Neha S Wadia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ryan V Zarcone
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA.,Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA.,Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Chen JF, Sun CP, Dong H. Extrapolating the thermodynamic length with finite-time measurements. Phys Rev E 2021; 104:034117. [PMID: 34654162 DOI: 10.1103/physreve.104.034117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/27/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic length, though providing a lower bound for the excess work required in a finite-time thermodynamic process, is determined by the properties of the equilibrium states reached by the quasistatic process and is thus beyond the direct experimental measurement. We propose an experimental strategy to measure the thermodynamic length of an open classical or quantum system by extrapolating finite-time measurements. The current proposal enables the measurement of the thermodynamic length for a single control parameter without requiring extra effort to find the optimal control scheme, and is illustrated with examples of the quantum harmonic oscillator with tuning frequency and the classical ideal gas with changing volume. Such a strategy shall shed light on the experimental design of the lacking platforms to measure the thermodynamic length.
Collapse
Affiliation(s)
- Jin-Fu Chen
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
14
|
Remlein B, Seifert U. Optimality of nonconservative driving for finite-time processes with discrete states. Phys Rev E 2021; 103:L050105. [PMID: 34134247 DOI: 10.1103/physreve.103.l050105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 11/07/2022]
Abstract
An optimal finite-time process drives a given initial distribution to a given final one in a given time at the lowest cost as quantified by total entropy production. We prove that for a system with discrete states this optimal process involves nonconservative driving, i.e., a genuine driving affinity, in contrast to the case of a system with continuous states. In a multicyclic network, the optimal driving affinity is bounded by the number of states within each cycle. If the driving affects forward and backwards rates nonsymmetrically, the bound additionally depends on a structural parameter characterizing this asymmetry.
Collapse
Affiliation(s)
- Benedikt Remlein
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
15
|
Abiuso P, Miller HJD, Perarnau-Llobet M, Scandi M. Geometric Optimisation of Quantum Thermodynamic Processes. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1076. [PMID: 33286845 PMCID: PMC7597153 DOI: 10.3390/e22101076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/22/2022]
Abstract
Differential geometry offers a powerful framework for optimising and characterising finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical introduction to the notion of thermodynamic length. We review and connect different frameworks where it emerges in the quantum regime: adiabatically driven closed systems, time-dependent Lindblad master equations, and discrete processes. A geometric lower bound on entropy production in finite-time is then presented, which represents a quantum generalisation of the original classical bound. Following this, we review and develop some general principles for the optimisation of thermodynamic processes in the linear-response regime. These include constant speed of control variation according to the thermodynamic metric, absence of quantum coherence, and optimality of small cycles around the point of maximal ratio between heat capacity and relaxation time for Carnot engines.
Collapse
Affiliation(s)
- Paolo Abiuso
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; (P.A.); (M.S.)
| | - Harry J. D. Miller
- Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | | | - Matteo Scandi
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; (P.A.); (M.S.)
| |
Collapse
|
16
|
|
17
|
Blaber S, Sivak DA. Optimal control of protein copy number. Phys Rev E 2020; 101:022118. [PMID: 32168689 DOI: 10.1103/physreve.101.022118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/16/2020] [Indexed: 11/07/2022]
Abstract
Cell-cell communication is often achieved by secreted signaling molecules that bind membrane-bound receptors. A common class of such receptors are G-protein coupled receptors, where extracellular binding induces changes on the membrane affinity near the receptor for certain cytosolic proteins, effectively altering their chemical potential. We analyze the minimum-dissipation schedules for dynamically changing chemical potential to induce steady-state changes in protein copy-number distributions, and illustrate with analytic solutions for linear chemical reaction networks. Protocols that change chemical potential on biologically relevant timescales are experimentally accessible using optogenetic manipulations, and our framework provides nontrivial predictions about functional dynamical cell-cell interactions.
Collapse
Affiliation(s)
- Steven Blaber
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
18
|
Desai VP, Frank F, Lee A, Righini M, Lancaster L, Noller HF, Tinoco I, Bustamante C. Co-temporal Force and Fluorescence Measurements Reveal a Ribosomal Gear Shift Mechanism of Translation Regulation by Structured mRNAs. Mol Cell 2019; 75:1007-1019.e5. [PMID: 31471187 DOI: 10.1016/j.molcel.2019.07.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/12/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022]
Abstract
The movement of ribosomes on mRNA is often interrupted by secondary structures that present mechanical barriers and play a central role in translation regulation. We investigate how ribosomes couple their internal conformational changes with the activity of translocation factor EF-G to unwind mRNA secondary structures using high-resolution optical tweezers with single-molecule fluorescence capability. We find that hairpin opening occurs during EF-G-catalyzed translocation and is driven by the forward rotation of the small subunit head. Modulating the magnitude of the hairpin barrier by force shows that ribosomes respond to strong barriers by shifting their operation to an alternative 7-fold-slower kinetic pathway prior to translocation. Shifting into a slow gear results from an allosteric switch in the ribosome that may allow it to exploit thermal fluctuations to overcome mechanical barriers. Finally, we observe that ribosomes occasionally open the hairpin in two successive sub-codon steps, revealing a previously unobserved translocation intermediate.
Collapse
Affiliation(s)
- Varsha P Desai
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Filipp Frank
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Antony Lee
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maurizio Righini
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Laura Lancaster
- Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Harry F Noller
- Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carlos Bustamante
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Abstract
Biomolecular machines are protein complexes that convert between different forms of free energy. They are utilized in nature to accomplish many cellular tasks. As isothermal nonequilibrium stochastic objects at low Reynolds number, they face a distinct set of challenges compared with more familiar human-engineered macroscopic machines. Here we review central questions in their performance as free energy transducers, outline theoretical and modeling approaches to understand these questions, identify both physical limits on their operational characteristics and design principles for improving performance, and discuss emerging areas of research.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics , University of California, San Diego , La Jolla , California 92093 , United States
| | - David A Sivak
- Department of Physics , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
20
|
Using a system's equilibrium behavior to reduce its energy dissipation in nonequilibrium processes. Proc Natl Acad Sci U S A 2019; 116:5920-5924. [PMID: 30867295 DOI: 10.1073/pnas.1817778116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells must operate far from equilibrium, utilizing and dissipating energy continuously to maintain their organization and to avoid stasis and death. However, they must also avoid unnecessary waste of energy. Recent studies have revealed that molecular machines are extremely efficient thermodynamically compared with their macroscopic counterparts. However, the principles governing the efficient out-of-equilibrium operation of molecular machines remain a mystery. A theoretical framework has been recently formulated in which a generalized friction coefficient quantifies the energetic efficiency in nonequilibrium processes. Moreover, it posits that, to minimize energy dissipation, external control should drive the system along the reaction coordinate with a speed inversely proportional to the square root of that friction coefficient. Here, we demonstrate the utility of this theory for designing and understanding energetically efficient nonequilibrium processes through the unfolding and folding of single DNA hairpins.
Collapse
|
21
|
Lucero JNE, Mehdizadeh A, Sivak DA. Optimal control of rotary motors. Phys Rev E 2019; 99:012119. [PMID: 30780326 DOI: 10.1103/physreve.99.012119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 06/09/2023]
Abstract
Single-molecule experiments have found near-perfect thermodynamic efficiency in the rotary motor F_{1}-ATP synthase. To help elucidate the principles underlying nonequilibrium energetic efficiency in such stochastic machines, we investigate driving protocols that minimize dissipation near equilibrium in a simple model rotary mechanochemical motor, as determined by a generalized friction coefficient. Our simple model has a periodic friction coefficient that peaks near system energy barriers. This implies a minimum-dissipation protocol that proceeds rapidly when the system is overwhelmingly in a single macrostate but slows significantly near energy barriers, thereby harnessing thermal fluctuations to kick the system over energy barriers with minimal work input. This model also manifests a phenomenon not seen in otherwise similar nonperiodic systems: Sufficiently fast protocols can effectively lap the system. While this leads to a trade-off between accuracy of driving and energetic cost, we find that our designed protocols outperform naive protocols.
Collapse
Affiliation(s)
- Joseph N E Lucero
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A1S6 Canada
| | | | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A1S6 Canada
| |
Collapse
|
22
|
Large SJ, Chetrite R, Sivak DA. Stochastic control in microscopic nonequilibrium systems. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/124/20001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Bravetti A, Tapias D. Thermodynamic cost for classical counterdiabatic driving. Phys Rev E 2017; 96:052107. [PMID: 29347640 DOI: 10.1103/physreve.96.052107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Motivated by the recent growing interest about the thermodynamic cost of shortcuts to adiabaticity, we consider the cost of driving a classical system by the so-called counterdiabatic driving (CD). To do so, we proceed in three steps: first we review a general definition recently put forward in the literature for the thermodynamic cost of driving a Hamiltonian system; then we provide a new complementary definition of cost, which is of particular relevance for cases where the average excess work vanishes; finally, we apply our general framework to the case of CD. Interestingly, we find that in such a case our results are the exact classical counterparts of those reported by Funo et al. [Phys. Rev. Lett. 118, 100602 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.100602]. In particular we show that a universal trade-off between speed and cost for CD also exists in the classical case. To illustrate our points we consider the example of a time-dependent harmonic oscillator subject to different strategies of adiabatic control.
Collapse
Affiliation(s)
- Alessandro Bravetti
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Diego Tapias
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|