1
|
Zhai RX, Cui FM, Ma YH, Sun CP, Dong H. Experimental test of power-efficiency trade-off in a finite-time Carnot cycle. Phys Rev E 2023; 107:L042101. [PMID: 37198805 DOI: 10.1103/physreve.107.l042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/15/2023] [Indexed: 05/19/2023]
Abstract
The Carnot cycle is a prototype of an ideal heat engine cycle to draw mechanical energy from the heat flux between two thermal baths with the maximum efficiency, dubbed as the Carnot efficiency η_{C}. Such efficiency is reached by thermodynamical equilibrium processes with infinite time, accompanied unavoidably with vanishing power-energy output per unit time. The quest to acquire high power leads to an open question of whether a fundamental maximum efficiency exists for finite-time heat engines with given power. We experimentally implement a finite-time Carnot cycle with sealed dry air as a working substance and verify the existence of a trade-off relation between power and efficiency. Efficiency up to (0.524±0.034)η_{C} is reached for the engine to generate the maximum power, consistent with the theoretical prediction η_{C}/2. Our experimental setup shall provide a platform for studying finite-time thermodynamics consisting of nonequilibrium processes.
Collapse
Affiliation(s)
- Ruo-Xun Zhai
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Fang-Ming Cui
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Beijing Normal University, Beijing 100875, China
| | - Yu-Han Ma
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
2
|
Ye Z, Holubec V. Maximum efficiency of low-dissipation heat pumps at given heating load. Phys Rev E 2022; 105:024139. [PMID: 35291093 DOI: 10.1103/physreve.105.024139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We derive an analytical expression for maximum efficiency at fixed power of heat pumps operating along a finite-time reverse Carnot cycle under the low-dissipation assumption. The result is cumbersome, but it implies simple formulas for tight upper and lower bounds on the maximum efficiency and various analytically tractable approximations. In general, our results qualitatively agree with those obtained earlier for endoreversible heat pumps. In fact, we identify a special parameter regime when the performance of the low-dissipation and endoreversible devices is the same. At maximum power, heat pumps operate as work to heat converters with efficiency 1. Expressions for maximum efficiency at given power can be helpful in the identification of more practical operation regimes.
Collapse
Affiliation(s)
- Zhuolin Ye
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Viktor Holubec
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| |
Collapse
|
3
|
Yuan H, Ma YH, Sun CP. Optimizing thermodynamic cycles with two finite-sized reservoirs. Phys Rev E 2022; 105:L022101. [PMID: 35291152 DOI: 10.1103/physreve.105.l022101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
We study the nonequilibrium thermodynamics of a heat engine operating between two finite-sized reservoirs with well-defined temperatures. Within the linear response regime, it is found that the uniform temperature of the two reservoirs at final time τ is bounded from below by the entropy production σ_{min}∝1/τ. We discover a general power-efficiency tradeoff depending on the ratio of heat capacities (γ) of the reservoirs for the engine, and a universal efficiency at maximum average power of the engine for arbitrary γ is obtained. For practical purposes, the operation protocol of an ideal gas heat engine to achieve the optimal performance associated with σ_{min} is demonstrated. Our findings can be used to develop a general optimization scenario for thermodynamic cycles with finite-sized reservoirs in real-world circumstances.
Collapse
Affiliation(s)
- Hong Yuan
- Graduate School of China Academy of Engineering Physics, Number 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Yu-Han Ma
- Graduate School of China Academy of Engineering Physics, Number 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Graduate School of China Academy of Engineering Physics, Number 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
4
|
Ye Z, Holubec V. Maximum efficiency of absorption refrigerators at arbitrary cooling power. Phys Rev E 2021; 103:052125. [PMID: 34134287 DOI: 10.1103/physreve.103.052125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
We consider absorption refrigerators consisting of simultaneously operating Carnot-type heat engine and refrigerator. Their maximum efficiency at given power (MEGP) is given by the product of MEGPs for the internal engine and refrigerator. The only subtlety of the derivation lies in the fact that the maximum cooling power of the absorption refrigerator is not limited just by the maximum power of the internal refrigerator, but, due to the first law, also by that of the internal engine. As a specific example, we consider the simultaneous absorption refrigerators composed of low-dissipation (LD) heat engines and refrigerators, for which the expressions for MEGPs are known. The derived expression for maximum efficiency implies bounds on the MEGP of LD absorption refrigerators. It also implies that a slight decrease in power of the absorption refrigerator from its maximum value results in a large nonlinear increase in efficiency, observed in heat engines, whenever the ratio of maximum powers of the internal engine and the refrigerator does not diverge. Otherwise, the increase in efficiency is linear as observed in LD refrigerators. Thus, in all practical situations, the efficiency of LD absorption refrigerators significantly increases when their cooling power is slightly decreased from its maximum.
Collapse
Affiliation(s)
- Zhuolin Ye
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Viktor Holubec
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| |
Collapse
|
5
|
Holubec V, Ye Z. Maximum efficiency of low-dissipation refrigerators at arbitrary cooling power. Phys Rev E 2020; 101:052124. [PMID: 32575339 DOI: 10.1103/physreve.101.052124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 11/07/2022]
Abstract
We analytically derive maximum efficiency at given cooling power for Carnot-type low-dissipation refrigerators. The corresponding optimal cycle duration depends on a single parameter, which is a specific combination of irreversibility parameters and bath temperatures. For a slight decrease in power with respect to its maximum value, the maximum efficiency exhibits an infinitely fast nonlinear increase, which is standard in heat engines, only for a limited range of parameters. Otherwise, it increases only linearly with the slope given by ratio of irreversibility parameters. This behavior can be traced to the fact that maximum power is attained for vanishing duration of the hot isotherm. Due to the lengthiness of the full solution for the maximum efficiency, we discuss and demonstrate these results using simple approximations valid for parameters yielding the two different qualitative behaviors. We also discuss relation of our findings to those obtained for minimally nonlinear irreversible refrigerators.
Collapse
Affiliation(s)
- Viktor Holubec
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany.,Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| | - Zhuolin Ye
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| |
Collapse
|
6
|
Chen JF, Sun CP, Dong H. Boosting the performance of quantum Otto heat engines. Phys Rev E 2019; 100:032144. [PMID: 31640026 DOI: 10.1103/physreve.100.032144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 11/07/2022]
Abstract
To optimize the performance of a heat engine in a finite-time cycle, it is important to understand the finite-time effect of thermodynamic processes. Previously, we have shown that extra work is needed to complete a quantum adiabatic process in finite time, and proved that the extra work follows a C/τ^{2} scaling for long control time τ. There the oscillating part of the extra work is neglected due to the complex energy-level structure of the particular quantum system. However, such oscillation of the extra work cannot be neglected in some quantum systems with simple energy-level structure, e.g., the two-level system or the quantum harmonic oscillator. In this paper, we build the finite-time quantum Otto engine on these simple systems, and find that the oscillating extra work leads to a jagged edge in the constraint relation between the output power and the efficiency. By optimizing the control time of the adiabatic processes, the oscillation in the extra work is utilized to enhance the maximum power and the efficiency. We further design special control schemes with the zero extra work at the specific control time. Compared to the linear control scheme, these special control schemes of the finite-time adiabatic process improve the maximum power and the efficiency of the finite-time Otto engine.
Collapse
Affiliation(s)
- Jin-Fu Chen
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China
| | - Chang-Pu Sun
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
7
|
Liu Q, Li W, Zhang M, He J, Wang J. Efficiency Bounds for Minimally Nonlinear Irreversible Heat Engines with Broken Time-Reversal Symmetry. ENTROPY (BASEL, SWITZERLAND) 2019; 21:e21070717. [PMID: 33267431 PMCID: PMC7515233 DOI: 10.3390/e21070717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 06/12/2023]
Abstract
We study the minimally nonlinear irreversible heat engines in which the time-reversal symmetry for the systems may be broken. The expressions for the power and the efficiency are derived, in which the effects of the nonlinear terms due to dissipations are included. We show that, as within the linear responses, the minimally nonlinear irreversible heat engines can enable attainment of Carnot efficiency at positive power. We also find that the Curzon-Ahlborn limit imposed on the efficiency at maximum power can be overcome if the time-reversal symmetry is broken.
Collapse
Affiliation(s)
- Qin Liu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Wei Li
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Min Zhang
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Ma YH, Xu D, Dong H, Sun CP. Optimal operating protocol to achieve efficiency at maximum power of heat engines. Phys Rev E 2018; 98:022133. [PMID: 30253629 DOI: 10.1103/physreve.98.022133] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 11/07/2022]
Abstract
Efficiency at maximum power has been investigated extensively, yet the practical control scheme to achieve it remains elusive. We fill this gap with a stepwise Carnot-like cycle, which consists of the discrete isothermal process (DIP) and adiabatic process. With DIP, we validate the widely adopted assumption of the C/t relation of the irreversible entropy generation S^{(ir)} and show the explicit dependence of the coefficient C on the fluctuation of the speed of tuning energy levels as well as the microscopic coupling constants to the heat baths. Such a dependence allows us to control the irreversible entropy generation by choosing specific control schemes. We further demonstrate the achievable efficiency at maximum power and the corresponding control scheme with the simple two-level system. Our current work opens new avenues for an experimental test, which was not feasible due to the lack the of the practical control scheme in the previous low-dissipation model or its equivalents.
Collapse
Affiliation(s)
- Yu-Han Ma
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of Chinese Academy of Engineering Physics, Beijing 100084, China
| | - Dazhi Xu
- Graduate School of Chinese Academy of Engineering Physics, Beijing 100084, China.,Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Dong
- Graduate School of Chinese Academy of Engineering Physics, Beijing 100084, China
| | - Chang-Pu Sun
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of Chinese Academy of Engineering Physics, Beijing 100084, China
| |
Collapse
|
9
|
Rojas-Gamboa DA, Rodríguez JI, Gonzalez-Ayala J, Angulo-Brown F. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study. Phys Rev E 2018; 98:022130. [PMID: 30253568 DOI: 10.1103/physreve.98.022130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 11/07/2022]
Abstract
We present a molecular dynamics simulation of a two-dimensional Carnot engine. The optimization of this engine is achieved through the velocity of the piston, allowing not only the optimization of power output but also some other figures of merit involving entropy production. The maximum power and maximum ecological efficiencies are computed. It is shown that the near ideal gas working substance displays an endoreversible Carnot-like engine behavior. This can be considered as a prove of the validity of the Carnot-like endoreversible model. An effective reversible cycle different than the Carnot one is obtained, in agreement with the endoreversible hypothesis flexibility. We compare the efficiencies stemming from an ideal gas approximation with those of the simulation, and then we propose a suitable approximation to an endoreversible heat engine and to a reversible Joule-Brayton cycle which fits very well to the simulation results. Finally, we show that the maximum ecological efficiency η=1-τ^{3/4}, which is also very close to the upper bound of the low-dissipation heat engine under maximum ecological (and Omega) conditions, is close for describing the dynamics of the simulated cycle under maximum power and maximum ecological conditions in the so-named heat engine operability region.
Collapse
Affiliation(s)
- David A Rojas-Gamboa
- Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, 07738, Ciudad de México, México
| | - Juan I Rodríguez
- Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, 07738, Ciudad de México, México
| | - Julian Gonzalez-Ayala
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain.,Instituto de Física Fundamental y Matemáticas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - F Angulo-Brown
- Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, 07738, Ciudad de México, México
| |
Collapse
|
10
|
Iyyappan I, Ponmurugan M. General relations between the power, efficiency, and dissipation for the irreversible heat engines in the nonlinear response regime. Phys Rev E 2018; 97:012141. [PMID: 29448419 DOI: 10.1103/physreve.97.012141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 06/08/2023]
Abstract
We derive the general relations between the maximum power, maximum efficiency, and minimum dissipation for the irreversible heat engine in a nonlinear response regime. In this context, we use the minimally nonlinear irreversible model and obtain the lower and upper bounds of the above relations for the asymmetric dissipation limits. These relations can be simplified further when the system possesses the time-reversal symmetry or antisymmetry. We find that our results are the generalization of various such relations obtained earlier for different heat engines.
Collapse
Affiliation(s)
- I Iyyappan
- Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, Tamil Nadu, India
| | - M Ponmurugan
- Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, Tamil Nadu, India
| |
Collapse
|
11
|
Holubec V, Ryabov A. Diverging, but negligible power at Carnot efficiency: Theory and experiment. Phys Rev E 2017; 96:062107. [PMID: 29347419 DOI: 10.1103/physreve.96.062107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Indexed: 11/07/2022]
Abstract
We discuss the possibility of reaching the Carnot efficiency by heat engines (HEs) out of quasistatic conditions at nonzero power output. We focus on several models widely used to describe the performance of actual HEs. These models comprise quantum thermoelectric devices, linear irreversible HEs, minimally nonlinear irreversible HEs, HEs working in the regime of low-dissipation, overdamped stochastic HEs and an underdamped stochastic HE. Although some of these HEs can reach the Carnot efficiency at nonzero and even diverging power, the magnitude of this power is always negligible compared to the maximum power attainable in these systems. We provide conditions for attaining the Carnot efficiency in the individual models and explain practical aspects connected with reaching the Carnot efficiency at large power output. Furthermore, we show how our findings can be tested in practice using a standard Brownian HE realizable with available micromanipulation techniques.
Collapse
Affiliation(s)
- Viktor Holubec
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany.,Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| | - Artem Ryabov
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| |
Collapse
|
12
|
Reyes-Ramírez I, Gonzalez-Ayala J, Calvo Hernández A, Santillán M. Local-stability analysis of a low-dissipation heat engine working at maximum power output. Phys Rev E 2017; 96:042128. [PMID: 29347531 DOI: 10.1103/physreve.96.042128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 06/07/2023]
Abstract
In this paper we address the stability of a low-dissipation (LD) heat engine (HE) under maximum power conditions. The LD system dynamics are analyzed in terms of the contact times between the engine and the external heat reservoirs, which determine the amount of heat exchanged by the system. We study two different scenarios that secure the existence of a single stable steady state. In these scenarios, contact times dynamics are governed by restitutive forces that are linear functions of either the heat amounts exchanged per cycle, or the corresponding heat fluxes. In the first case, according to our results, preferably locating the system irreversibility sources at the hot-reservoir coupling improves the system stability and increases its efficiency. On the other hand, reducing the thermal gradient increases the system efficiency but deteriorates its stability properties, because the restitutive forces are smaller. Additionally, it is possible to compare the relaxation times with the total cycle time and obtain some constraints upon the system dynamics. In the second case, where the restitutive forces are assumed to be linear functions of the heat fluxes, we find that although the partial contact time presents a locally stable stationary value, the total cycle time does not; instead, there exists an infinite collection of steady values located in the neighborhood of the fixed point, along a one-dimensional manifold. Finally, the role of dissipation asymmetries on the efficiency, the stability, and the ratio of the total cycle time to the relaxation time is emphasized.
Collapse
Affiliation(s)
- I Reyes-Ramírez
- Instituto Politécnico Nacional-UPIITA, Av. IPN 2580, Ciudad de México 07340, México
| | - J Gonzalez-Ayala
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain
| | - A Calvo Hernández
- Departamento de Física Aplicada, Facultad de Ciencias and Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - M Santillán
- Centro de Investigación y Estudios Avanzados del IPN Unidad Monterrey, Vía del Conocimiento 201, Parque PIIT, 66600 Apodaca NL, Mexico
| |
Collapse
|
13
|
Zhang R, Li QW, Tang FR, Yang XQ, Bai L. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry. Phys Rev E 2017; 96:022133. [PMID: 28950616 DOI: 10.1103/physreve.96.022133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Indexed: 06/07/2023]
Abstract
We investigate the performance at a given power of a thermoelectric heat engine with broken time-reversal symmetry, and derive analytically the efficiency at a given power of a thermoelectric generator within linear irreversible thermodynamics. A universal bound on the efficiency of the thermoelectric heat engine is achieved under a strong constraint on the Onsager coefficients, and some interesting features are further revealed. Our results demonstrate that there exists a trade-off between efficiency and power output, and the efficiency at a given power may surpass the Curzon-Ahlborn limit due to broken time-reversal symmetry. Moreover, optimal efficiency at a given power can be achieved, which indicates that broken time-reversal symmetry offers physically allowed ways to optimize the performance of heat engines. Our study may contribute to the interesting guidelines for optimizing actual engines.
Collapse
Affiliation(s)
- Rong Zhang
- School of Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qian-Wen Li
- School of Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - F R Tang
- School of Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - X Q Yang
- School of Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - L Bai
- School of Physics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
14
|
|
15
|
Gonzalez-Ayala J, Calvo Hernández A, Roco JMM. From maximum power to a trade-off optimization of low-dissipation heat engines: Influence of control parameters and the role of entropy generation. Phys Rev E 2017; 95:022131. [PMID: 28297927 DOI: 10.1103/physreve.95.022131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 06/06/2023]
Abstract
For a low-dissipation heat engine model we present the role of the partial contact times and the total operational time as control parameters to switch from maximum power state to maximum Ω trade-off state. The symmetry of the dissipation coefficients may be used in the design of the heat engine to offer, in such switching, a suitable compromise between efficiency gain, power losses, and entropy change. Bounds for entropy production, efficiency, and power output are presented for transitions between both regimes. In the maximum power and maximum Ω trade-off cases the relevant space of parameters are analyzed together with the configuration of minimum entropy production. A detailed analysis of the parameter's space shows physically prohibited regions in which there is no longer a heat engine and another region that is physically well behaved but is not suitable for possible optimization criteria.
Collapse
Affiliation(s)
| | - A Calvo Hernández
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
| | - J M M Roco
- Departamento de Física Aplicada and Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|