1
|
Liu J, Jing L, Pähtz T, Cui Y, Zhou GGD, Fu X. Effects of particle elongation on dense granular flows down a rough inclined plane. Phys Rev E 2024; 110:044902. [PMID: 39562877 DOI: 10.1103/physreve.110.044902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 11/21/2024]
Abstract
Granular materials in nature are nearly always nonspherical, but particle shape effects in granular flow remain largely elusive. This study uses discrete element method simulations to investigate how elongated particle shapes affect the mobility of dense granular flows down a rough incline. For a range of systematically varied particle length-to-diameter aspect ratios (AR), we run simulations with various flow thicknesses h and slope angles θ to extract the well-known h_{stop}(θ) curves (below which the flow ceases) and the Fr-h/h_{stop} relations following Pouliquen's approach, where Fr=u/sqrt[gh] is the Froude number, u is the mean flow velocity, and g is the gravitational acceleration. The slope β of the Fr-h/h_{stop} relations shows an intriguing S-shaped dependence on AR, with two plateaus at small and large AR, respectively, transitioning with a sharp increase. We understand this S-shaped dependence by examining statistics of particle orientation, alignment, and hindered rotation. We find that the rotation ability of weakly elongated particles (AR≲1.3) remains similar to spheres, leading to the first plateau in the β-AR relation, whereas the effects of particle orientation saturate beyond AR≈2.0, explaining the second plateau. An empirical sigmoidal function is proposed to capture this nonlinear dependence. The findings are expected to enhance our understanding of how particle shape affects the flow of granular materials from both the flow- and particle-scale perspectives.
Collapse
Affiliation(s)
| | - Lu Jing
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | | | | | | | | |
Collapse
|
2
|
Jing L, Yang G, Kwok C, Sobral Y. Flow regimes and dynamic similarity of immersed granular collapse: A CFD-DEM investigation. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Kang H, Lourenço SDN, Yan WM. Lattice Boltzmann simulation of droplet dynamics on granular surfaces with variable wettability. Phys Rev E 2018; 98:012902. [PMID: 30110734 DOI: 10.1103/physreve.98.012902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 06/08/2023]
Abstract
Soil-composing particles undergo wettability changes, impacting hydraulic and mechanical processes such as erosion and landslides. Such processes evolve at very small scales, typically at the particle level. Here we capture the evolution of liquid interfaces in a single particle and several particles with the lattice Boltzmann (LB) method. The paper presents a three-dimensional LB study on the droplet dynamics on a layer of uniformly packed spherical particles with varying size and intrinsic contact angle (CA) aimed at mimicking conditions comparable to those of real soils. The numerical droplet is initialized close to the granular surface and deposited by gravity. Three spreading and infiltration behaviors were identified: a droplet with a stable apparent CA, a droplet with a metastable apparent CA before infiltration, and immediate infiltration. The results showed that the formation of a droplet with a stable or metastable spherical-cap shape depends on the particle size and the intrinsic CA. Furthermore, the initial wetted zone expansion was found to be governed by inertial effects with its behavior characterized by a power law. Finally, the apparent CA, which is closely related to the intrinsic CA, was found to be influenced by the particle size due to a significant portion of the droplet being embedded into the granular surface for the larger particles and reducing the apparent CA. This paper provides a basis for future research targeting the behavior of droplet interaction with granular surfaces with variable intrinsic CAs (from wettable to superhydrophobic) such as soils and other granular materials for industrial applications. The numerical approach implemented can also be extended to model other dynamic processes for a droplet, such as evaporation, high-velocity impacting, and lateral sliding.
Collapse
Affiliation(s)
- Hengyi Kang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Sérgio D N Lourenço
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - W M Yan
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Deng Z, Umbanhowar PB, Ottino JM, Lueptow RM. Continuum modelling of segregating tridisperse granular chute flow. Proc Math Phys Eng Sci 2018; 474:20170384. [PMID: 29662334 DOI: 10.1098/rspa.2017.0384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/12/2018] [Indexed: 02/01/2023] Open
Abstract
Segregation and mixing of size multidisperse granular materials remain challenging problems in many industrial applications. In this paper, we apply a continuum-based model that captures the effects of segregation, diffusion and advection for size tridisperse granular flow in quasi-two-dimensional chute flow. The model uses the kinematics of the flow and other physical parameters such as the diffusion coefficient and the percolation length scale, quantities that can be determined directly from experiment, simulation or theory and that are not arbitrarily adjustable. The predictions from the model are consistent with experimentally validated discrete element method (DEM) simulations over a wide range of flow conditions and particle sizes. The degree of segregation depends on the Péclet number, Pe, defined as the ratio of the segregation rate to the diffusion rate, the relative segregation strength κij between particle species i and j, and a characteristic length L, which is determined by the strength of segregation between smallest and largest particles. A parametric study of particle size, κij , Pe and L demonstrates how particle segregation patterns depend on the interplay of advection, segregation and diffusion. Finally, the segregation pattern is also affected by the velocity profile and the degree of basal slip at the chute surface. The model is applicable to different flow geometries, and should be easily adapted to segregation driven by other particle properties such as density and shape.
Collapse
Affiliation(s)
- Zhekai Deng
- Department of Chemical and Biological Engineering, Northwestern University, IL 60208, USA
| | - Paul B Umbanhowar
- Department of Mechanical Engineering, Northwestern University, IL 60208, USA
| | - Julio M Ottino
- Department of Chemical and Biological Engineering, Northwestern University, IL 60208, USA.,Department of Mechanical Engineering, Northwestern University, IL 60208, USA.,The Northwestern University Institute on Complex Systems (NICO), Northwestern University, IL 60208, USA
| | - Richard M Lueptow
- Department of Chemical and Biological Engineering, Northwestern University, IL 60208, USA.,Department of Mechanical Engineering, Northwestern University, IL 60208, USA.,The Northwestern University Institute on Complex Systems (NICO), Northwestern University, IL 60208, USA
| |
Collapse
|
5
|
Yang GC, Kwok CY, Sobral YD. The role of fluid viscosity in an immersed granular collapse. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714009037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Jing L, Kwok CY, Leung YF, Sobral YD. Effect of geometric base roughness on size segregation. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714003056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Jing L, Kwok CY, Leung YF. Micromechanical Origin of Particle Size Segregation. PHYSICAL REVIEW LETTERS 2017; 118:118001. [PMID: 28368626 DOI: 10.1103/physrevlett.118.118001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 06/07/2023]
Abstract
We computationally study the micromechanics of shear-induced size segregation and propose distinct migration mechanisms for individual large and small particles. While small particles percolate through voids without enduring contacts, large particles climb under shear through their crowded neighborhoods with anisotropic contact network. Particle rotation associated with shear is necessary for the upward migration of large particles. Segregation of large particles can be suppressed with inadequate friction, or with no rotation; increasing interparticle friction promotes the migration of large particles, but has little effect on the percolation of small particles.
Collapse
Affiliation(s)
- L Jing
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - C Y Kwok
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Y F Leung
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|