1
|
Beckinghausen M, Spakowitz AJ. Interplay of Polymer Structure, Solvent Ordering, and Charge Fluctuations in Polyelectrolyte Solution Thermodynamics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Michael Beckinghausen
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
| | - Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
- Department of Applied Physics, Stanford University, Stanford, California94305, United States
- Biophysics Program, Stanford University, Stanford, California94305, United States
| |
Collapse
|
2
|
Qing L, Lei J, Zhao T, Qiu G, Ma M, Xu Z, Zhao S. Effects of Kinetic Dielectric Decrement on Ion Diffusion and Capacitance in Electrochemical Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4055-4064. [PMID: 32233504 DOI: 10.1021/acs.langmuir.0c00353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diffusion of ionic components in electrolytes not only eliminates the gradients of ionic concentrations but also alters the local dielectric environment, and the coupling effect between kinetic dielectric decrement and ionic concentration gradient on the diffusion dynamics is not well understood. Herein, taking the charging process in electrical double layer systems as a case study, we conduct a multiscale investigation of ion diffusions in aqueous electrolytes by combining the dynamic density functional theory and an ion-concentration-dependent dielectric constant model. By properly considering the time evolutions of local dielectric constant coupled with ion density, we report an interesting phenomenon on the suppression of surface charge density that is not captured by conventional models. In addition, we show that the usage of aqueous electrolyte with small dielectric decrement coefficients promotes the capacitance, in quantitative agreement with experimental measurements.
Collapse
Affiliation(s)
- Leying Qing
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Jun Lei
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Teng Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Genlong Qiu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Manman Ma
- School of Mathematical Sciences, Tongji University, 200092 Shanghai, China
| | - Zhenli Xu
- School of Mathematical Sciences, Institute of Natural Sciences, and MoE Key Lab of Scientific and Engineering Computing, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Pohl MN, Muchová E, Seidel R, Ali H, Sršeň Š, Wilkinson I, Winter B, Slavíček P. Do water's electrons care about electrolytes? Chem Sci 2019; 10:848-865. [PMID: 30774880 PMCID: PMC6346409 DOI: 10.1039/c8sc03381a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/01/2018] [Indexed: 01/01/2023] Open
Abstract
Ions have a profound effect on the geometrical structure of liquid water and an aqueous environment is known to change the electronic structure of ions. Here we combine photoelectron spectroscopy measurements from liquid microjets with molecular dynamical and quantum chemical calculations to address the reverse question, to what extent do ions affect the electronic structure of liquid water? We study aqueous solutions of sodium iodide (NaI) over a wide concentration range, from nearly pure water to 8 M solutions, recording spectra in the 5 to 60 eV binding energy range to include all water valence and the solute Na+ 2p, I- 4d, and I- 5p orbital ionization peaks. We observe that the electron binding energies of the solute ions change only slightly as a function of electrolyte concentration, less than 150 ± 60 meV over an ∼8 M range. Furthermore, the photoelectron spectrum of liquid water is surprisingly mildly affected as we transform the sample from a dilute aqueous salt solution to a viscous, crystalline-like phase. The most noticeable spectral changes are a negative binding energy shift of the water 1b2 ionizing transition (up to -370 ± 60 meV) and a narrowing of the flat-top shape water 3a1 ionization feature (up to 450 ± 90 meV). A novel computationally efficient technique is introduced to calculate liquid-state photoemission spectra using small clusters from molecular dynamics (MD) simulations embedded in dielectric continuum. This theoretical treatment captured the characteristic positions and structures of the aqueous photoemission peaks, reproducing the experimentally observed narrowing of the water 3a1 feature and weak sensitivity of the water binding energies to electrolyte concentration. The calculations allowed us to attribute the small binding energy shifts to ion-induced disruptions of intermolecular electronic interactions. Furthermore, they demonstrate the importance of considering concentration-dependent screening lengths for a correct description of the electronic structure of solvated systems. Accounting for electronic screening, the calculations highlight the minimal effect of electrolyte concentration on the 1b1 binding energy reference, in accord with the experiments. This leads us to a key finding that the isolated, lowest-binding-energy, 1b1, photoemission feature of liquid water is a robust energetic reference for aqueous liquid microjet photoemission studies.
Collapse
Affiliation(s)
- Marvin N Pohl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , D-14195 Berlin , Germany .
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , D-14195 Berlin , Germany
| | - Eva Muchová
- Department of Physical Chemistry , University of Chemistry and Technology , Technická 5 , 16628 Prague , Czech Republic .
| | - Robert Seidel
- Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner-Platz 1 , D-14109 Berlin , Germany .
- Humboldt-Universität zu Berlin , Department of Chemistry , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany
| | - Hebatallah Ali
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , D-14195 Berlin , Germany .
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , D-14195 Berlin , Germany
| | - Štěpán Sršeň
- Department of Physical Chemistry , University of Chemistry and Technology , Technická 5 , 16628 Prague , Czech Republic .
| | - Iain Wilkinson
- Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner-Platz 1 , D-14109 Berlin , Germany .
| | - Bernd Winter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , D-14195 Berlin , Germany .
| | - Petr Slavíček
- Department of Physical Chemistry , University of Chemistry and Technology , Technická 5 , 16628 Prague , Czech Republic .
| |
Collapse
|
4
|
Alimohamadi H, Rangamani P. Modeling Membrane Curvature Generation due to Membrane⁻Protein Interactions. Biomolecules 2018; 8:E120. [PMID: 30360496 PMCID: PMC6316661 DOI: 10.3390/biom8040120] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
To alter and adjust the shape of the plasma membrane, cells harness various mechanisms of curvature generation. Many of these curvature generation mechanisms rely on the interactions between peripheral membrane proteins, integral membrane proteins, and lipids in the bilayer membrane. Mathematical and computational modeling of membrane curvature generation has provided great insights into the physics underlying these processes. However, one of the challenges in modeling these processes is identifying the suitable constitutive relationships that describe the membrane free energy including protein distribution and curvature generation capability. Here, we review some of the commonly used continuum elastic membrane models that have been developed for this purpose and discuss their applications. Finally, we address some fundamental challenges that future theoretical methods need to overcome to push the boundaries of current model applications.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
5
|
Wang C, Ren P, Luo R. Ionic Solution: What Goes Right and Wrong with Continuum Solvation Modeling. J Phys Chem B 2017; 121:11169-11179. [PMID: 29164898 DOI: 10.1021/acs.jpcb.7b09616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solvent-mediated electrostatic interactions were well recognized to be important in the structure and function of molecular systems. Ionic interaction is an important component in electrostatic interactions, especially in highly charged molecules, such as nucleic acids. Here, we focus on the quality of the widely used Poisson-Boltzmann surface area (PBSA) continuum models in modeling ionic interactions by comparing with both explicit solvent simulations and the experiment. In this work, the molality-dependent chemical potentials for sodium chloride (NaCl) electrolyte were first simulated in the SPC/E explicit solvent. Our high-quality simulation agrees well with both the previous study and the experiment. Given the free-energy simulations in SPC/E as the benchmark, we used the same sets of snapshots collected in the SPC/E solvent model for PBSA free-energy calculations in the hope to achieve the maximum consistency between the two solvent models. Our comparative analysis shows that the molality-dependent chemical potentials of NaCl were reproduced well with both linear PB and nonlinear PB methods, although nonlinear PB agrees better with SPC/E and the experiment. Our free-energy simulations also show that the presence of salt increases the hydrophobic effect in a nonlinear fashion, in qualitative agreement with previous theoretical studies of Onsager and Samaras. However, the lack of molality-dependency in the nonelectrostatics continuum models dramatically reduces the overall quality of PBSA methods in modeling salt-dependent energetics. These analyses point to further improvements needed for more robust modeling of solvent-mediated interactions by the continuum solvation frameworks.
Collapse
Affiliation(s)
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas , Austin, Texas 78712, United States
| | | |
Collapse
|