• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4710451)   Today's Articles (5408)
For: Mertens S, Ziff RM. Percolation in finite matching lattices. Phys Rev E 2016;94:062152. [PMID: 28085467 DOI: 10.1103/physreve.94.062152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 06/06/2023]
Number Cited by Other Article(s)
1
Martins PHL, Dickman R, Ziff RM. Percolation in two-species antagonistic random sequential adsorption in two dimensions. Phys Rev E 2023;107:024104. [PMID: 36932526 DOI: 10.1103/physreve.107.024104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
2
Hu H, Ziff RM, Deng Y. Universal Critical Behavior of Percolation in Orientationally Ordered Janus Particles and Other Anisotropic Systems. PHYSICAL REVIEW LETTERS 2022;129:278002. [PMID: 36638286 DOI: 10.1103/physrevlett.129.278002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
3
Xu W, Wang J, Hu H, Deng Y. Critical polynomials in the nonplanar and continuum percolation models. Phys Rev E 2021;103:022127. [PMID: 33736116 DOI: 10.1103/physreve.103.022127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/15/2021] [Indexed: 11/07/2022]
4
Xun Z, Ziff RM. Bond percolation on simple cubic lattices with extended neighborhoods. Phys Rev E 2020;102:012102. [PMID: 32795057 DOI: 10.1103/physreve.102.012102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
5
Bobrowski O, Skraba P. Homological percolation and the Euler characteristic. Phys Rev E 2020;101:032304. [PMID: 32289953 DOI: 10.1103/physreve.101.032304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
6
Mertens S, Moore C. Percolation Is Odd. PHYSICAL REVIEW LETTERS 2019;123:230605. [PMID: 31868436 DOI: 10.1103/physrevlett.123.230605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 06/10/2023]
7
Mertens S, Jensen I, Ziff RM. Universal features of cluster numbers in percolation. Phys Rev E 2017;96:052119. [PMID: 29347665 DOI: 10.1103/physreve.96.052119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Indexed: 06/07/2023]
8
Mertens S, Moore C. Percolation thresholds in hyperbolic lattices. Phys Rev E 2017;96:042116. [PMID: 29347529 DOI: 10.1103/physreve.96.042116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Indexed: 06/07/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA