1
|
Mo R, Xu D, Xu N. Thinning by cluster breaking: Active matter and shear flows share thinning mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2318917121. [PMID: 38843185 PMCID: PMC11181082 DOI: 10.1073/pnas.2318917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/04/2024] [Indexed: 06/19/2024] Open
Abstract
Among many unexpected phenomena of active matter is the recently observed superfluid-like thinning (viscosity drop) behavior of bacteria suspensions. Understanding this peculiar self-propelled thinning by active matter is of theoretical and practical importance. Here, we find that, although distinct in driving mechanisms, active matter and shear flows exhibit similar thinning behaviors upon the increase of self-propulsion and shear forces, respectively. Our structural characterizations reveal that they actually share the same cluster-breaking mechanism of thinning. How fast and how shattered the cluster is broken determines the (dis)continuity of the thinning. This explains why adding active particles to Newtonian fluids can cause thinning, in which rotation of active particles play a key role in breaking clusters. Our work proposes a mechanism of self-propelled thinning and further establishes the underlying connections between active matter and shear flows.
Collapse
Affiliation(s)
- Ruoyang Mo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Ding Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Ning Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| |
Collapse
|
2
|
Liu X, Lefever JA, Lee D, Zhang J, Carpick RW, Li J. Friction and Adhesion Govern Yielding of Disordered Nanoparticle Packings: A Multiscale Adhesive Discrete Element Method Study. NANO LETTERS 2021; 21:7989-7997. [PMID: 34569799 DOI: 10.1021/acs.nanolett.1c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent studies have demonstrated that amorphous materials, from granular packings to atomic glasses, share multiple striking similarities, including a universal onset strain level for yield. This is despite vast differences in length scales and in the constituent particles' interactions. However, the nature of localized particle rearrangements is not well understood, and how local interactions affect overall performance remains unknown. Here, we introduce a multiscale adhesive discrete element method to simulate recent novel experiments of disordered nanoparticle packings indented and imaged with single nanoparticle resolution. The simulations exhibit multiple behaviors matching the experiments. By directly monitoring spatial rearrangements and interparticle bonding/debonding under the packing's surface, we uncover the mechanisms of the yielding and hardening phenomena observed in experiments. Interparticle friction and adhesion synergistically toughen the packings and retard plastic deformation. Moreover, plasticity can result from bond switching without particle rearrangements. These results furnish insights for understanding yielding in amorphous materials generally.
Collapse
Affiliation(s)
- Xiaohui Liu
- Institute of Materials Modification and Modeling, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joel A Lefever
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jie Zhang
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Robert W Carpick
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Deng L, Zhao C, Xu Z, Zheng W. Critical point of jamming transition in two-dimensional monodisperse systems. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:75. [PMID: 33306156 DOI: 10.1140/epje/i2020-11998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The existence of amorphous packings in two-dimensional monodisperse system is a classical unsolved problem. We get the energy minimum state by the energy minimization method of enthalpy under constant pressure conditions. Firstly, we find that there are two peaks in the experiment, which demonstrate the interesting features of the coexistence of crystals and amorphous crystals. And then, we confirm the critical point of jamming transition of the two-dimensional monodisperse is [Formula: see text]. Finally, we prove that the jamming scaling is still satisfied in two-dimensional monodispersed system: [Formula: see text] and vanishes as [Formula: see text], and the boson peak shifts to lower frequencies for less compressed systems.
Collapse
Affiliation(s)
- Liping Deng
- Institute of Public Safety and Big Data, College of Data Science, Taiyuan University of Technology, 030060, Taiyuan, China
- Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, 315211, Ningbo, China
| | - Cai Zhao
- Institute of Public Safety and Big Data, College of Data Science, Taiyuan University of Technology, 030060, Taiyuan, China
| | - Zhenhuan Xu
- Institute of Public Safety and Big Data, College of Data Science, Taiyuan University of Technology, 030060, Taiyuan, China
| | - Wen Zheng
- Institute of Public Safety and Big Data, College of Data Science, Taiyuan University of Technology, 030060, Taiyuan, China.
- Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, 315211, Ningbo, China.
- Center for Healthy Big Data, Changzhi Medical College, 046000, Changzhi, Shanxi, China.
| |
Collapse
|
4
|
Wang Y, Fang S, Xu N, Deng Y. Two-Scale Scenario of Rigidity Percolation of Sticky Particles. PHYSICAL REVIEW LETTERS 2020; 124:255501. [PMID: 32639758 DOI: 10.1103/physrevlett.124.255501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
In the presence of attraction, the jamming transition of packings of frictionless particles corresponds to the rigidity percolation. When the range of attraction is long, the distribution of the size of rigid clusters, P(s), is continuous and shows a power-law decay. For systems with short-range attractions, however, P(s) appears discontinuous. There is a power-law decay for small cluster sizes, followed by a low probability gap and a peak near the system size. We find that this appearing "discontinuity" does not mean that the transition is discontinuous. In fact, it signifies the coexistence of two distinct length scales, associated with the largest cluster and smaller ones, respectively. The comparison between the largest and second largest clusters indicates that their growth rates with system size are rather different. However, both cluster sizes tend to diverge in the large system size limit, suggesting that the jamming transition of systems with short-range attractions is still continuous. In the framework of the two-scale scenario, we also derive a generalized hyperscaling relation. With robust evidence, our work challenges the former single-scale view of the rigidity percolation.
Collapse
Affiliation(s)
- Yuchuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Sheng Fang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ning Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Youjin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
5
|
Mo R, Liao Q, Xu N. Rheological similarities between dense self-propelled and sheared particulate systems. SOFT MATTER 2020; 16:3642-3648. [PMID: 32219271 DOI: 10.1039/d0sm00101e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Different from previous modeling of self-propelled particles, we develop a method to propel particles with a constant average velocity instead of a constant force. This constant propulsion velocity (CPV) approach is validated by its agreement with the conventional constant propulsion force (CPF) approach in the flowing regime. However, the CPV approach shows its advantage of accessing quasistatic flows of yield stress fluids with a vanishing propulsion velocity, while the CPF approach is usually unable to because of finite system size. Taking this advantage, we realize cyclic self-propulsion and study the evolution of the propulsion force with the propelled particle displacement, both in the quasistatic flow regime. By mapping the shear stress and shear rate to the propulsion force and propulsion velocity, we find similar rheological behaviors of self-propelled systems to sheared systems, including the yield force gap between the CPF and CPV approaches, propulsion force overshoot, reversible-irreversible transition under cyclic propulsion, and propulsion bands in plastic flows. These similarities suggest underlying connections between self-propulsion and shear, although they act on systems in different ways.
Collapse
Affiliation(s)
- Ruoyang Mo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Qinyi Liao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Ning Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| |
Collapse
|
6
|
|
7
|
Koeze DJ, Tighe BP. Sticky Matters: Jamming and Rigid Cluster Statistics with Attractive Particle Interactions. PHYSICAL REVIEW LETTERS 2018; 121:188002. [PMID: 30444395 DOI: 10.1103/physrevlett.121.188002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 06/09/2023]
Abstract
While the large majority of theoretical and numerical studies of the jamming transition consider athermal packings of purely repulsive spheres, real complex fluids and soft solids generically display attraction between particles. By studying the statistics of rigid clusters in simulations of soft particles with an attractive shell, we present evidence for two distinct jamming scenarios. Strongly attractive systems undergo a continuous transition in which rigid clusters grow and ultimately diverge in size at a critical packing fraction. Purely repulsive and weakly attractive systems jam via a first-order transition, with no growing cluster size. We further show that the weakly attractive scenario is a finite size effect, so that for any nonzero attraction strength, a sufficiently large system will fall in the strongly attractive universality class. We therefore expect attractive jamming to be generic in the laboratory and in nature.
Collapse
Affiliation(s)
- Dion J Koeze
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
8
|
Liao Q, Xu N. Criticality of the zero-temperature jamming transition probed by self-propelled particles. SOFT MATTER 2018; 14:853-860. [PMID: 29308823 DOI: 10.1039/c7sm01909b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We perform simulations of athermal systems of self-propelled particles (SPPs) interacting via harmonic repulsion in the vicinity of the zero-temperature jamming transition at point J. Every particle is propelled by a constant force f pointing to a randomly assigned and fixed direction. When f is smaller than the yield force fy, the system is statically jammed. We find that fy increases with packing fraction and exhibits finite size scaling, implying the criticality of point J. When f > fy, SPPs flow forever and their velocities satisfy the k-Gamma distribution. Velocity distributions at various packing fractions and f collapse when the particle velocity is scaled by the average velocity v[combining macron], suggesting that v[combining macron] is a reasonable quantity to characterize the response to f. We thus define a response function R(ϕ,f) = v[combining macron](ϕ,f)/f. The function exhibits critical scaling nicely, implying again the criticality of point J. Our analysis and results indicate that systems of SPPs behave analogically to sheared systems, although their driving mechanisms are apparently distinct.
Collapse
Affiliation(s)
- Qinyi Liao
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale & Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | | |
Collapse
|
9
|
Jones MA, Ness C. Linking attractive interactions and confinement to the rheological response of suspended particles close to jamming. GRANULAR MATTER 2017; 20:3. [PMID: 31983891 PMCID: PMC6954019 DOI: 10.1007/s10035-017-0770-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 06/10/2023]
Abstract
We study the response to simple shear start-up of an overdamped, athermal assembly of particles with tuneable attractive interactions. We focus on volume fractions close to the jamming point, where such systems can become disordered elastoplastic solids. By systematically varying the strength of the particle-particle attraction and the volume fraction, we demonstrate how cohesion and confinement individually contribute to the shear modulus and yield strain of the material. The results provide evidence for the influence of binding agents on the rheology of dense, athermal suspensions and describe a set of handles with which the macroscopic properties of such materials can be engineered.
Collapse
Affiliation(s)
- Michael A. Jones
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE UK
| | - Christopher Ness
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS UK
| |
Collapse
|
10
|
Lin J, Zheng W. Universal scaling of the stress-strain curve in amorphous solids. Phys Rev E 2017; 96:033002. [PMID: 29346991 DOI: 10.1103/physreve.96.033002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The yielding transition of amorphous solids is a phase transition with a special type of universality. Critical exponents and scaling relations have been defined and proposed near the yield stress. We show here that, even in the initial stage of shear far below the yield stress, the stress-strain curve of amorphous solids also shows critical scaling with universal exponents. The key point is to remove the elastic part of the strain, and the shear stress exhibits a sublinear scaling with the plastic strain. We show how this critical scaling is related to the finite size effect of the minimum strain to trigger the first plastic avalanche after a quench. We point out that this sublinear scaling between the stress and the plastic strain implies the divergence of a high-order shear modulus. A scaling relation is derived between two exponents characterizing the stress-strain curve and the density distribution of the local stabilities, respectively. We test the critical scaling of the stress-strain curve using both mesoscopic and atomistic simulations and get satisfying agreement in two and three dimensions.
Collapse
Affiliation(s)
- Jie Lin
- Department of Physics, Center for Soft Matter Research, New York University, New York 10003, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Wen Zheng
- Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
11
|
Wijtmans S, Manning ML. Disentangling defects and sound modes in disordered solids. SOFT MATTER 2017; 13:5649-5655. [PMID: 28770260 DOI: 10.1039/c7sm00792b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We develop a new method to isolate localized defects from extended vibrational modes in disordered solids. This method augments particle interactions with an artificial potential that acts as a high-pass filter: it preserves small-scale structures while pushing extended vibrational modes to higher frequencies. The low-frequency modes that remain are "bare" defects; they are exponentially localized without the quadrupolar tails associated with elastic interactions. We demonstrate that these localized excitations are excellent predictors of plastic rearrangements in the solid. We characterize several of the properties of these defects that appear in mesoscopic theory of plasticity, including their distribution of energy barriers, number density, and size, which is a first step in testing and revising continuum models for plasticity in disordered solids.
Collapse
|