Shpielberg O, Nemoto T. Imitating nonequilibrium steady states using time-varying equilibrium force in many-body diffusive systems.
Phys Rev E 2019;
100:032104. [PMID:
31640012 DOI:
10.1103/physreve.100.032104]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 11/07/2022]
Abstract
An equivalence between nonequilibrium steady states (NESS) driven by a time-independent force and stochastic pumps (SP) stirred by a time-varying conservative force is studied for general many-body diffusive systems. When the particle density and current of NESS are imitated by SP time-averaged counterparts, we prove that the entropy production rate in the SP is always greater than that of the NESS, provided that the conductivity of the particle current is concave as a function of the particle density. Searching for a SP protocol that saturates the entropy production bound reveals an unexpected connection with traffic waves, where a high density region propagates against the direction of the particle current.
Collapse