1
|
Liu P, Chen Y, Chai X. Soliton and rogue wave excitations in the Chen-Lee-Liu derivative nonlinear Schrödinger equation with two complex PT-symmetric potentials. CHAOS (WOODBURY, N.Y.) 2025; 35:013120. [PMID: 39787288 DOI: 10.1063/5.0239750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
We demonstrate that fundamental nonlinear localized modes can exist in the Chen-Lee-Liu equation modified by several parity-time (PT) symmetric complex potentials. The explicit formula of analytical solitons is derived from the physically interesting Scarf-II potential, and families of spatial solitons in internal modes are numerically captured under the optical lattice potential. By the spectral analysis of linear stability, we observe that these bright solitons can remain stable across a broad scope of potential parameters, despite the breaking of the corresponding linear PT-symmetric phases. When these bright spatial solitons interact with external incident waves, they can always maintain their original shape, while the external incident wave may remain unchanged or may generate a reflected wave after the interaction. Then, the adiabatic switching of potential parameters is carried out in a way that allows these bright solitons to be excited from one unstable bound state to another alternative stable bound state. Many other intriguing properties associated with these nonlinear localized modes including the lateral power flow are further analyzed meticulously. Various high-order rogue waves induced by modulation instability in these PT-symmetric systems are generated too. These results may be useful to construct novel optical soliton communication schemes or design related optical materials.
Collapse
Affiliation(s)
- Ping Liu
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
| | - Yong Chen
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
| | - Xuedong Chai
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
2
|
Saha N, Roy B, Khare A. Dipole and quadrupole nonparaxial solitary waves. CHAOS (WOODBURY, N.Y.) 2022; 32:093106. [PMID: 36182394 DOI: 10.1063/5.0096099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The cubic nonlinear Helmholtz equation with third and fourth order dispersion and non-Kerr nonlinearity, such as the self steepening and the self frequency shift, is considered. This model describes nonparaxial ultrashort pulse propagation in an optical medium in the presence of spatial dispersion originating from the failure of slowly varying envelope approximation. We show that this system admits periodic (elliptic) solitary waves with a dipole structure within a period and also a transition from a dipole to quadrupole structure within a period depending on the value of the modulus parameter of a Jacobi elliptic function. The parametric conditions to be satisfied for the existence of these solutions are given. The effect of the nonparaxial parameter on physical quantities, such as amplitude, pulse width, and speed of the solitary waves, is examined. It is found that by adjusting the nonparaxial parameter, the speed of solitary waves can be decelerated. The stability and robustness of the solitary waves are discussed numerically.
Collapse
Affiliation(s)
- Naresh Saha
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Barnana Roy
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Avinash Khare
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
3
|
Chen Y, Song J, Li X, Yan Z. Stability and modulation of optical peakons in self-focusing/defocusing Kerr nonlinear media with PT-δ-hyperbolic-function potentials. CHAOS (WOODBURY, N.Y.) 2022; 32:023122. [PMID: 35232047 DOI: 10.1063/5.0080485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In this paper, we introduce a class of novel PT- δ-hyperbolic-function potentials composed of the Dirac δ(x) and hyperbolic functions, supporting fully real energy spectra in the non-Hermitian Hamiltonian. The threshold curves of PT symmetry breaking are numerically presented. Moreover, in the self-focusing and defocusing Kerr-nonlinear media, the PT-symmetric potentials can also support the stable peakons, keeping the total power and quasi-power conserved. The unstable PT-symmetric peakons can be transformed into other stable peakons by the excitations of potential parameters. Continuous families of additional stable numerical peakons can be produced in internal modes around the exact peakons (even unstable). Further, we find that the stable peakons can always propagate in a robust form, remaining trapped in the slowly moving potential wells, which opens the way for manipulations of optical peakons. Other significant characteristics related to exact peakons, such as the interaction and power flow, are elucidated in detail. These results will be useful in explaining the related physical phenomena and designing the related physical experiments.
Collapse
Affiliation(s)
- Yong Chen
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
| | - Jin Song
- Key Lab of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Li
- School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, China
| | - Zhenya Yan
- Key Lab of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Zhong M, Chen Y, Yan Z, Tian SF. Formation, stability, and adiabatic excitation of peakons and double-hump solitons in parity-time-symmetric Dirac-δ(x)-Scarf-II optical potentials. Phys Rev E 2022; 105:014204. [PMID: 35193183 DOI: 10.1103/physreve.105.014204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
We introduce a class of physically intriguing PT-symmetric Dirac-δ-Scarf-II optical potentials. We find the parameter region making the corresponding non-Hermitian Hamiltonian admit the fully real spectra, and present the stable parameter domains for these obtained peakons, smooth solitons, and double-hump solitons in the self-focusing nonlinear Kerr media with PT-symmetric δ-Scarf-II potentials. In particular, the stable wave propagations are exhibited for the peakon solutions and double-hump solitons from some given parameters even if the corresponding parameters belong to the linear PT-phase broken region. Moreover, we also find the stable wave propagations of exact and numerical peakons and double-hump solitons in the interplay between the power-law nonlinearity and PT-symmetric potentials. Finally, we examine the interactions of the nonlinear modes with exotic waves, and the stable adiabatic excitations of peakons and double-hump solitons in the PT-symmetric Kerr nonlinear media. These results provide the theoretical basis for the design of related physical experiments and applications in PT-symmetric nonlinear optics, Bose-Einstein condensates, and other relevant physical fields.
Collapse
Affiliation(s)
- Ming Zhong
- School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yong Chen
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhenya Yan
- Key Lab of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shou-Fu Tian
- School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
5
|
Chen Y, Yan Z, Mihalache D. Soliton formation and stability under the interplay between parity-time-symmetric generalized Scarf-II potentials and Kerr nonlinearity. Phys Rev E 2020; 102:012216. [PMID: 32795035 DOI: 10.1103/physreve.102.012216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
Abstract
We present an alternative type of parity-time (PT)-symmetric generalized Scarf-II potentials, which makes possible for non-Hermitian Hamiltonians in the classical linear Schrödinger system to possess fully real spectra with unique features such as the multiple PT-symmetric breaking behaviors and to support one-dimensional (1D) stable PT-symmetric solitons of power-law waveform, namely power-law solitons, in focusing Kerr-type nonlinear media. Moreover, PT-symmetric high-order solitons are also derived numerically in 1D and 2D settings. Around the exactly obtained nonlinear propagation constants, families of 1D and 2D localized nonlinear modes are also found numerically. The majority of fundamental nonlinear modes can still keep steady in general, whereas the 1D multipeak solitons and 2D vortex solitons are usually susceptible to suffering from instability. Likewise, similar results occur in the defocusing Kerr-nonlinear media. The obtained results will be useful for understanding the complex dynamics of nonlinear waves that form in PT-symmetric nonlinear media in other physical contexts.
Collapse
Affiliation(s)
- Yong Chen
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhenya Yan
- Key Lab of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dumitru Mihalache
- Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, RO-077125, Romania
| |
Collapse
|
6
|
Chen Y, Yan Z, Mihalache D. Stable flat-top solitons and peakons in the PT-symmetric δ-signum potentials and nonlinear media. CHAOS (WOODBURY, N.Y.) 2019; 29:083108. [PMID: 31472484 DOI: 10.1063/1.5100294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
We discover that the physically interesting PT-symmetric Dirac delta-function potentials can not only make sure that the non-Hermitian Hamiltonians admit fully-real linear spectra but also support stable peakons (nonlinear modes) in the Kerr nonlinear Schrödinger equation. For a specific form of the delta-function PT-symmetric potentials, the nonlinear model investigated in this paper is exactly solvable. However, for a class of PT-symmetric signum-function double-well potentials, a novel type of exact flat-top bright solitons can exist stably within a broad range of potential parameters. Intriguingly, the flat-top solitons can be characterized by the finite-order differentiable waveforms and admit the novel features differing from the usual solitons. The excitation features and the direction of transverse power flow of flat-top bright solitons are also explored in detail. These results are useful for the related experimental designs and applications in nonlinear optics and other related fields.
Collapse
Affiliation(s)
- Yong Chen
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhenya Yan
- Key Lab of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Dumitru Mihalache
- Horia Hulubei National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Magurele RO-077125, Romania
| |
Collapse
|
7
|
Wang L, Malomed BA, Yan Z. Attraction centers and parity-time-symmetric delta-functional dipoles in critical and supercritical self-focusing media. Phys Rev E 2019; 99:052206. [PMID: 31212420 DOI: 10.1103/physreve.99.052206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 11/07/2022]
Abstract
We introduce a model based on the one-dimensional nonlinear Schrödinger equation with critical (quintic) or supercritical self-focusing nonlinearity. We demonstrate that a family of solitons, which are unstable in this setting against the critical or supercritical collapse, is stabilized by pinning to an attractive defect, that may also include a parity-time (PT)-symmetric gain-loss component. The model can be realized as a planar waveguide in nonlinear optics, and in a super-Tonks-Girardeau bosonic gas. For the attractive defect with the delta-functional profile, a full family of the pinned solitons is found in an exact analytical form. In the absence of the gain-loss term, the solitons' stability is investigated in an analytical form too, by means of the Vakhitov-Kolokolov criterion; in the presence of the PT-balanced gain and loss, the stability is explored by means of numerical methods. In particular, the entire family of pinned solitons is stable in the quintic (critical) medium if the gain-loss term is absent. A stability region for the pinned solitons persists in the model with an arbitrarily high power of the self-focusing nonlinearity. A weak gain-loss component gives rise to intricate alternations of stability and instability in the system's parameter plane. Those solitons which are unstable under the action of the supercritical self-attraction are destroyed by the collapse. On the other hand, if the self-attraction-driven instability is weak and the gain-loss term is present, unstable solitons spontaneously transform into localized breathers, while the collapse does not occur. The same outcome may be caused by a combination of the critical nonlinearity with the gain and loss. Instability of the solitons is also possible when the PT-symmetric gain-loss term is added to the subcritical nonlinearity. The system with self-repulsive nonlinearity is briefly considered too, producing completely stable families of pinned localized states.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boris A Malomed
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 59978, Israel
| | - Zhenya Yan
- Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Chen Y, Yan Z, Liu W. Impact of near-𝒫𝒯 symmetry on exciting solitons and interactions based on a complex Ginzburg-Landau model. OPTICS EXPRESS 2018; 26:33022-33034. [PMID: 30645460 DOI: 10.1364/oe.26.033022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
We theoretically report the influence of a class of near-parity-time-(𝒫𝒯-) symmetric potentials on solitons in the complex Ginzburg-Landau (CGL) equation. Although the linear spectral problem with the potentials does not admit entirely-real spectra due to the existence of spectral filtering parameter α2 or nonlinear gain-loss coefficient β2, we do find stable exact solitons in the second quadrant of the (α2, β2) space including on the corresponding axes. Other fascinating properties associated with the solitons are also examined, such as the interactions and energy flux. Moreover, we study the excitations of nonlinear modes by considering adiabatic changes of parameters in a generalized CGL model. These results are useful for the related experimental designs and applications.
Collapse
|
9
|
Yan Z, Chen Y. The nonlinear Schrödinger equation with generalized nonlinearities and PT-symmetric potentials: Stable solitons, interactions, and excitations. CHAOS (WOODBURY, N.Y.) 2017; 27:073114. [PMID: 28764412 DOI: 10.1063/1.4995363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate the nonlinear Schrödinger (NLS) equation with generalized nonlinearities and complex non-Hermitian potentials and present the novel parity-time-( PT-) symmetric potentials for the NLS equation with power-law nonlinearities supporting some bright solitons. For distinct types of PT-symmetric potentials including Scarf-II, Hermite-Gaussian, and asymptotically periodic potentials, we, respectively, explore the phase transitions for the linear Hamiltonian operators. Moreover, we analytically find stable bright solitons in the generalized NLS equations with several types of PT-symmetric potentials, and their stability is corroborated by the linear stability spectrum and direct wave-propagation simulations. Interactions of two solitons are also explored. More interestingly, we find that the nonlinearity can excite the unstable linear modes (i.e., possessing broken linear PT-symmetric phase) to stable nonlinear modes. The results may excite potential applications in nonlinear optics, Bose-Einstein condensates, and relevant fields.
Collapse
Affiliation(s)
- Zhenya Yan
- Key Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSS, Chinese Academy of Sciences, Beijing 100190, China and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSS, Chinese Academy of Sciences, Beijing 100190, China and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wen Z, Yan Z. Solitons and their stability in the nonlocal nonlinear Schrödinger equation with PT-symmetric potentials. CHAOS (WOODBURY, N.Y.) 2017; 27:053105. [PMID: 28576099 DOI: 10.1063/1.4982972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report localized nonlinear modes of the self-focusing and defocusing nonlocal nonlinear Schrödinger equation with the generalized PT-symmetric Scarf-II, Rosen-Morse, and periodic potentials. Parameter regions are presented for broken and unbroken PT-symmetric phases of linear bounded states and the linear stability of the obtained solitons. Moreover, we numerically explore the dynamical behaviors of solitons and find stable solitons for some given parameters.
Collapse
Affiliation(s)
- Zichao Wen
- Key Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSS, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenya Yan
- Key Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSS, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Chen Y, Yan Z, Mihalache D, Malomed BA. Families of stable solitons and excitations in the PT-symmetric nonlinear Schrödinger equations with position-dependent effective masses. Sci Rep 2017; 7:1257. [PMID: 28455499 PMCID: PMC5430832 DOI: 10.1038/s41598-017-01401-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/29/2017] [Indexed: 11/09/2022] Open
Abstract
Since the parity-time-([Formula: see text]-) symmetric quantum mechanics was put forward, fundamental properties of some linear and nonlinear models with [Formula: see text]-symmetric potentials have been investigated. However, previous studies of [Formula: see text]-symmetric waves were limited to constant diffraction coefficients in the ambient medium. Here we address effects of variable diffraction coefficient on the beam dynamics in nonlinear media with generalized [Formula: see text]-symmetric Scarf-II potentials. The broken linear [Formula: see text] symmetry phase may enjoy a restoration with the growing diffraction parameter. Continuous families of one- and two-dimensional solitons are found to be stable. Particularly, some stable solitons are analytically found. The existence range and propagation dynamics of the solitons are identified. Transformation of the solitons by means of adiabatically varying parameters, and collisions between solitons are studied too. We also explore the evolution of constant-intensity waves in a model combining the variable diffraction coefficient and complex potentials with globally balanced gain and loss, which are more general than [Formula: see text]-symmetric ones, but feature similar properties. Our results may suggest new experiments for [Formula: see text]-symmetric nonlinear waves in nonlinear nonuniform optical media.
Collapse
Affiliation(s)
- Yong Chen
- Key Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSS, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenya Yan
- Key Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSS, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dumitru Mihalache
- Department of Theoretical Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-6, Bucharest, Romania
| | - Boris A Malomed
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 59978, Israel
- Laboratory of Nonlinear-Optical Informatics, ITMO University, St. Petersburg, 197101, Russia
| |
Collapse
|