1
|
Bedolla-Montiel EA, Castañeda-Cerdán RA, Castañeda-Priego R. Phase diagram of the hard-sphere potential model in three and four dimensions using a pseudo-hard-sphere potential. J Chem Phys 2025; 162:164504. [PMID: 40260815 DOI: 10.1063/5.0264356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
The hard-sphere potential has become a cornerstone in the study of both molecular and complex fluids. Despite its mathematical simplicity, its implementation in fixed time step molecular simulations remains a formidable challenge due to the discontinuity at contact. To avoid the issues associated with the ill-defined force at contact, a continuous potential has recently been proposed-here referred to as the pseudo-hard-sphere potential (pHS) [Báez et al., J. Chem, Phys. 149, 164907 (2018)]. This potential is constructed to match the second virial coefficient of the hard-sphere potential and is expected to mimic its thermodynamic properties. However, this hypothesis has only been partially validated within the fluid region of the phase diagram for hard-sphere dispersions in two and three dimensions. In this contribution, we examine the ability of the continuous pHS potential to reproduce the equation of state of a hard-sphere fluid, not only in the fluid phase but also across the fluid-solid coexistence region. Our focus is primarily on the phase diagram of hard-sphere systems in three and four dimensions; however, we also report on the feasibility of the pHS to reproduce the long time dynamics of a three-dimensional colloidal dispersion. We compare the thermodynamic properties obtained from Brownian dynamics simulations of the pHS potential with those derived from refined event-driven simulations of the corresponding hard-sphere potential. Furthermore, we provide a comparative analysis with theoretical equations of state based on both mean-field and integral equation approximations.
Collapse
Affiliation(s)
- Edwin A Bedolla-Montiel
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| | - Ramón A Castañeda-Cerdán
- Departamento de Física, Cinvestav, Av. IPN 2508, Col.San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, Mexico
| | - Ramón Castañeda-Priego
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre, 37150 León, Guanajuato, Mexico
| |
Collapse
|
2
|
Weidig D, Wagner J. Coupled dynamics in binary mixtures of model colloidal Yukawa systems. SOFT MATTER 2024; 20:8897-8908. [PMID: 39485293 DOI: 10.1039/d4sm01123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The dynamical behavior of binary mixtures consisting of highly charged colloidal particles is studied by means of Brownian dynamics simulations. We investigate differently sized, but identically charged particles with nearly identical interactions between all species in highly dilute suspensions. Different short-time self-diffusion coefficients induce, mediated by electrostatic interactions, a coupling of both self and collective dynamics of differently sized particles: the long-time self-diffusion coefficients of a larger species are increased by the presence of a more mobile, smaller species and vice versa. Similar coupling effects are observed in collective dynamics where both time constant and functional form of intermediate scattering functions' initial decay are influenced by the presence of a differently sized species. We provide a systematic analysis of coupling effects in dependence on the ratio of sizes, number densities, and the strength of electrostatic interactions.
Collapse
Affiliation(s)
- Daniel Weidig
- Institut für Chemie, Universität Rostock, 18051 Rostock, Germany.
| | - Joachim Wagner
- Institut für Chemie, Universität Rostock, 18051 Rostock, Germany.
| |
Collapse
|
3
|
Diaz Maier J, Wagner J. Rescaled mode-coupling scheme for the quantitative description of experimentally observed colloid dynamics. Phys Rev E 2024; 109:064605. [PMID: 39020974 DOI: 10.1103/physreve.109.064605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 07/20/2024]
Abstract
We describe experimentally observed collective dynamics in colloidal suspensions of model hard-sphere particles using a modified mode coupling theory (MCT). This rescaled MCT is capable of describing quantitatively the wave-vector and time-dependent diffusion in these systems. Intermediate scattering functions of liquidlike structured dispersions are determined by means of static and dynamic light-scattering experiments. The structure and short-time dynamics of the systems can be described quantitatively employing a multicomponent Percus-Yevick ansatz for the partial structure factors and an effective, one-component description of hydrodynamic interactions based on the semianalytical δγ expansion. Combined with a recently proposed empirical modification of MCT in which memory functions are calculated using effective structure factors at rescaled number densities, the scheme is able to model the collective dynamics over the entire accessible time and wave-vector range and predicts the volume-fraction-dependence of long-time self-diffusion coefficients and the zero-shear viscosity quantitatively. This highlights the potential of MCT as a practical tool for the quantitative analysis and prediction of experimental observations.
Collapse
|
4
|
Fayen E, Filion L, Foffi G, Smallenburg F. Quasicrystal of Binary Hard Spheres on a Plane Stabilized by Configurational Entropy. PHYSICAL REVIEW LETTERS 2024; 132:048202. [PMID: 38335332 DOI: 10.1103/physrevlett.132.048202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/08/2023] [Accepted: 01/03/2024] [Indexed: 02/12/2024]
Abstract
Because of their aperiodic nature, quasicrystals are one of the least understood phases in statistical physics. One significant complication they present in comparison to their periodic counterparts is the fact that any quasicrystal can be realized as an exponentially large number of different tilings, resulting in a significant contribution to the quasicrystal entropy. Here, we use free-energy calculations to demonstrate that it is this configurational entropy which stabilizes a dodecagonal quasicrystal in a binary mixture of hard spheres on a plane. Our calculations also allow us to quantitatively confirm that in this system all tiling realizations are essentially equally likely, with free-energy differences less than 0.0001k_{B}T per particle-an observation that could be related to the observation of only random tilings in soft-matter quasicrystals. Owing to the simplicity of the model and its available counterparts in colloidal experiments, we believe that this system is an excellent candidate to achieve the long-awaited quasicrystal self-assembly on the micron scale.
Collapse
Affiliation(s)
- Etienne Fayen
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Laura Filion
- Soft Condensed Matter, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Giuseppe Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Frank Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
5
|
Fink Z, Kim PY, Srivastava S, Ribbe AE, Hoagland DA, Russell TP. Evidence for Enhanced Tracer Diffusion in Densely Packed Interfacial Assemblies of Hairy Nanoparticles. NANO LETTERS 2023; 23:10383-10390. [PMID: 37955362 DOI: 10.1021/acs.nanolett.3c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nearly monodisperse nanoparticle (NP) spheres attached to a nonvolatile ionic liquid surface were tracked by in situ scanning electron microscopy to obtain the tracer diffusion coefficient Dtr as a function of the areal fraction ϕ. The in situ technique resolved both tracer (gold) and background (silica) particles for ∼1-2 min, highlighting their mechanisms of diffusion, which were strongly dependent on ϕ. Structure and dynamics at low and moderate ϕ paralleled those reported for larger colloidal spheres, showing an increase in order and a decrease in Dtr by over 4 orders of magnitude. However, ligand interactions were more important near jamming, leading to different caging and jamming dynamics for smaller NPs. The normalized Dtr at ultrahigh ϕ depended on particle diameter and ligand molecular weight. Increasing the PEG molecular weight by a factor of 4 increased Dtr by 2 orders of magnitude at ultrahigh ϕ, indicating stronger ligand lubrication for smaller particles.
Collapse
Affiliation(s)
- Zachary Fink
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Satyam Srivastava
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alexander E Ribbe
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - David A Hoagland
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|
6
|
Martínez-Rivera J, Villada-Balbuena A, Sandoval-Puentes MA, Egelhaaf SU, Méndez-Alcaraz JM, Castañeda-Priego R, Escobedo-Sánchez MA. Modeling the structure and thermodynamics of multicomponent and polydisperse hard-sphere dispersions with continuous potentials. J Chem Phys 2023; 159:194110. [PMID: 37982478 DOI: 10.1063/5.0168098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023] Open
Abstract
A model system of identical particles interacting via a hard-sphere potential is essential in condensed matter physics; it helps to understand in and out of equilibrium phenomena in complex fluids, such as colloidal dispersions. Yet, most of the fixed time-step algorithms to study the transport properties of those systems have drawbacks due to the mathematical nature of the interparticle potential. Because of this, mapping a hard-sphere potential onto a soft potential has been recently proposed [Báez et al., J. Chem. Phys. 149, 164907 (2018)]. More specifically, using the second virial coefficient criterion, one can set a route to estimate the parameters of the soft potential that accurately reproduces the thermodynamic properties of a monocomponent hard-sphere system. However, real colloidal dispersions are multicomponent or polydisperse, making it important to find an efficient way to extend the potential model for dealing with such kind of many-body systems. In this paper, we report on the extension and applicability of the second virial coefficient criterion to build a description that correctly captures the phenomenology of both multicomponent and polydisperse hard-sphere dispersions. To assess the accuracy of the continuous potentials, we compare the structure of soft polydisperse systems with their hard-core counterpart. We also contrast the structural and thermodynamic properties of soft binary mixtures with those obtained through mean-field approximations and the Ornstein-Zernike equation for the two-component hard-sphere dispersion.
Collapse
Affiliation(s)
- Jaime Martínez-Rivera
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Colonia Lomas del Campestre, 37150 León, Guanjuato, Mexico
| | | | - Miguel A Sandoval-Puentes
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Colonia Lomas del Campestre, 37150 León, Guanjuato, Mexico
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - José M Méndez-Alcaraz
- Departamento de Física, Cinvestav, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Ramón Castañeda-Priego
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Colonia Lomas del Campestre, 37150 León, Guanajuato, Mexico
| | | |
Collapse
|
7
|
Raybin JG, Wai RB, Ginsberg NS. Nonadditive Interactions Unlock Small-Particle Mobility in Binary Colloidal Monolayers. ACS NANO 2023; 17:8303-8314. [PMID: 37093781 PMCID: PMC10173694 DOI: 10.1021/acsnano.2c12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We examine the organization and dynamics of binary colloidal monolayers composed of micron-scale silica particles interspersed with smaller-diameter silica particles that serve as minority component impurities. These binary monolayers are prepared at the surface of ionic liquid droplets over a range of size ratios (σ = 0.16-0.66) and are studied with low-dose minimally perturbative scanning electron microscopy (SEM). The high resolution of SEM imaging provides direct tracking of all particle coordinates over time, enabling a complete description of the microscopic state. In these bidisperse size mixtures, particle interactions are nonadditive because interfacial pinning to the droplet surface causes the equators of differently sized particles to lie in separate planes. By varying the size ratio, we control the extent of nonadditivity in order to achieve phase behavior inaccessible to additive 2D systems. Across the range of size ratios, we tune the system from a mobile small-particle phase (σ < 0.24) to an interstitial solid (0.24 < σ < 0.33) and furthermore to a disordered glass (σ > 0.33). These distinct phase regimes are classified through measurements of hexagonal ordering of the large-particle host lattice and the lattice's capacity for small-particle transport. Altogether, we explain these structural and dynamic trends by considering the combined influence of interparticle interactions and the colloidal packing geometry. Our measurements are reproduced in molecular dynamics simulations of 2D nonadditive disks, suggesting an efficient method for describing confined systems with reduced dimensionality representations.
Collapse
Affiliation(s)
- Jonathan G Raybin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Rebecca B Wai
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Naomi S Ginsberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- STROBE, NSF Science & Technology Center, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Pattern detection in colloidal assembly: A mosaic of analysis techniques. Adv Colloid Interface Sci 2020; 284:102252. [PMID: 32971396 DOI: 10.1016/j.cis.2020.102252] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/19/2023]
Abstract
Characterization of the morphology, identification of patterns and quantification of order encountered in colloidal assemblies is essential for several reasons. First of all, it is useful to compare different self-assembly methods and assess the influence of different process parameters on the final colloidal pattern. In addition, casting light on the structures formed by colloidal particles can help to get better insight into colloidal interactions and understand phase transitions. Finally, the growing interest in colloidal assemblies in materials science for practical applications going from optoelectronics to biosensing imposes a thorough characterization of the morphology of colloidal assemblies because of the intimate relationship between morphology and physical properties (e.g. optical and mechanical) of a material. Several image analysis techniques developed to investigate images (acquired via scanning electron microscopy, digital video microscopy and other imaging methods) provide variegated and complementary information on the colloidal structures under scrutiny. However, understanding how to use such image analysis tools to get information on the characteristics of the colloidal assemblies may represent a non-trivial task, because it requires the combination of approaches drawn from diverse disciplines such as image processing, computational geometry and computational topology and their application to a primarily physico-chemical process. Moreover, the lack of a systematic description of such analysis tools makes it difficult to select the ones more suitable for the features of the colloidal assembly under examination. In this review we provide a methodical and extensive description of real-space image analysis tools by explaining their principles and their application to the investigation of two-dimensional colloidal assemblies with different morphological characteristics.
Collapse
|
9
|
Siboni NH, Thorneywork AL, Damm A, Dullens RPA, Horbach J. Long-time self-diffusion in quasi-two-dimensional colloidal fluids of paramagnetic particles. Phys Rev E 2020; 101:042609. [PMID: 32422843 DOI: 10.1103/physreve.101.042609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/03/2020] [Indexed: 11/07/2022]
Abstract
The effect of hydrodynamic interactions (HI) on the long-time self-diffusion in quasi-two-dimensional fluids of paramagnetic colloidal particles is investigated using a combination of experiments and Brownian dynamics (BD) simulations. In the BD simulations, the direct interactions (DI) between the particles consist of a short-ranged repulsive part and a long-ranged part that is proportional to 1/r^{3}, with r the interparticle distance. By studying the equation of state, the simulations allow for the identification of the regime where the properties of the fluid are fully controlled by the long-ranged interactions, and the thermodynamic state solely depends on the dimensionless interaction strength Γ. In this regime, the radial distribution functions from the simulations are in quantitative agreement with those from the experiments for different fluid area fractions. This agreement confirms that the DI in the experiments and simulations are identical, which thus allows us to isolate the role of HI, as these are not taken into account in the BD simulations. Experiment and simulation fall onto a master curve with respect to the Γ dependence of D_{L}^{★}=D_{L}/(D_{0}Γ^{1/2}), with D_{0} the self-diffusion coefficient at infinite dilution and D_{L} the long-time self-diffusion coefficient. Our results thus show that, although HI affect the short-time self-diffusion, for a quasi-two-dimensional system with 1/r^{3} long-ranged DI, the reduced quantity D_{L}^{★} is effectively not affected by HI. Interestingly, this is in agreement with prior work on quasi-two-dimensional colloidal hard spheres.
Collapse
Affiliation(s)
- Nima H Siboni
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Alice L Thorneywork
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Park Road, Oxford OX1 3QZ, United Kingdom.,Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Alicia Damm
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Park Road, Oxford OX1 3QZ, United Kingdom
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Park Road, Oxford OX1 3QZ, United Kingdom
| | - Jürgen Horbach
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Klopp C, Trittel T, Eremin A, Harth K, Stannarius R, Park CS, Maclennan JE, Clark NA. Structure and dynamics of a two-dimensional colloid of liquid droplets. SOFT MATTER 2019; 15:8156-8163. [PMID: 31595938 DOI: 10.1039/c9sm01433k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Droplet arrays in thin, freely suspended liquid-crystalline smectic A films can form two-dimensional (2D) colloids. The droplets interact repulsively, arranging locally in a more or less hexagonal arrangement with only short-range spatial and orientational correlations and local lattice cell parameters that depend on droplet size. In contrast to quasi-2D colloids described earlier, there is no 3D bulk liquid subphase that affects the hydrodynamics. Although the films are surrounded by air, the droplet dynamics are genuinely 2D, the mobility of each droplet in its six-neighbor cage being determined by the ratio of cage and droplet sizes, rather than by the droplet size as in quasi-2D colloids. These experimental observations are described well by Saffman's model of a diffusing particle in a finite 2D membrane. The experiments were performed in microgravity, on the International Space Station.
Collapse
Affiliation(s)
- Christoph Klopp
- Institute of Physics, Otto von Guericke University, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Torsten Trittel
- Institute of Physics, Otto von Guericke University, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Alexey Eremin
- Institute of Physics, Otto von Guericke University, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Kirsten Harth
- Institute of Physics, Otto von Guericke University, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Ralf Stannarius
- Institute of Physics, Otto von Guericke University, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Cheol S Park
- Soft Materials Research Center, Physics Department, University of Colorado, Boulder, CO 80309, USA
| | - Joseph E Maclennan
- Soft Materials Research Center, Physics Department, University of Colorado, Boulder, CO 80309, USA
| | - Noel A Clark
- Soft Materials Research Center, Physics Department, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
11
|
Rodrigues NT, Oliveira TJ. Thermodynamic behavior of binary mixtures of hard spheres: Semianalytical solutions on a Husimi lattice built with cubes. Phys Rev E 2019; 100:032112. [PMID: 31639939 DOI: 10.1103/physreve.100.032112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 11/07/2022]
Abstract
We study binary mixtures of hard particles, which exclude up to their kth nearest neighbors (kNN) on the simple cubic lattice and have activities z_{k}. In the first model analyzed, point particles (0NN) are mixed with 1NN ones. The grand-canonical solution of this model on a Husimi lattice built with cubes unveils a phase diagram with a fluid and a solid phase separated by a continuous and a discontinuous transition line which meet at a tricritical point. A density anomaly, characterized by minima in isobaric curves of the total density of particles against z_{0} (or z_{1}), is also observed in this system. Overall, this scenario is identical to the one previously found for this model when defined on the square lattice. The second model investigated consists of the mixture of 1NN particles with 2NN ones. In this case, a very rich phase behavior is found in its Husimi lattice solution, with two solid phases-one associated with the ordering of 1NN particles (S1) and the other with the ordering of 2NN ones (S2)-beyond the fluid (F) phase. While the transitions between F-S2 and S1-S2 phases are always discontinuous, the F-S1 transition is continuous (discontinuous) for small (large) z_{2}. The critical and coexistence F-S1 lines meet at a tricritical point. Moreover, the coexistence F-S1,F-S2, and S1-S2 lines meet at a triple point. Density anomalies are absent in this case.
Collapse
Affiliation(s)
- Nathann T Rodrigues
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
12
|
Thorneywork AL, Schnyder SK, Aarts DGAL, Horbach J, Roth R, Dullens RPA. Structure factors in a two-dimensional binary colloidal hard sphere system. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1492745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Alice L. Thorneywork
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Simon K. Schnyder
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, Japan
| | - Dirk G. A. L. Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Jürgen Horbach
- Institut für Theoretische Physik II, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Roland Roth
- Institut für Theoretische Physik, Universität Tübingen, Tübingen, Germany
| | - Roel P. A. Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Stopper D, Thorneywork AL, Dullens RPA, Roth R. Bulk dynamics of Brownian hard disks: Dynamical density functional theory versus experiments on two-dimensional colloidal hard spheres. J Chem Phys 2018; 148:104501. [DOI: 10.1063/1.5019447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Daniel Stopper
- Institute for Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Alice L. Thorneywork
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Roel P. A. Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Roland Roth
- Institute for Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Thorneywork AL, Abbott JL, Aarts DGAL, Dullens RPA. Two-Dimensional Melting of Colloidal Hard Spheres. PHYSICAL REVIEW LETTERS 2017; 118:158001. [PMID: 28452525 DOI: 10.1103/physrevlett.118.158001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 05/27/2023]
Abstract
We study the melting of quasi-two-dimensional colloidal hard spheres by considering a tilted monolayer of particles in sedimentation-diffusion equilibrium. In particular, we measure the equation of state from the density profiles and use time-dependent and height-resolved correlation functions to identify the liquid, hexatic, and crystal phases. We find that the liquid-hexatic transition is first order and that the hexatic-crystal transition is continuous. Furthermore, we directly measure the width of the liquid-hexatic coexistence gap from the fluctuations of the corresponding interface, and thereby experimentally establish the full phase behavior of hard disks.
Collapse
Affiliation(s)
- Alice L Thorneywork
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Joshua L Abbott
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|