1
|
Arai T, Kawamura Y, Aoyagi T. Setting of the Poincaré section for accurately calculating the phase of rhythmic spatiotemporal dynamics. Phys Rev E 2025; 111:014205. [PMID: 39972746 DOI: 10.1103/physreve.111.014205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025]
Abstract
Synchronization analysis of real-world systems is essential across numerous fields, including physics, chemistry, and life sciences. Generally, the governing equations of these systems are unknown, and thus, the phase is calculated from measurements. Although existing phase calculation techniques are designed for oscillators that possess no spatial structure, methods for handling spatiotemporal dynamics remain undeveloped. The presence of spatial structure complicates the determination of which measurements should be used for accurate phase calculation. To address this, we explore a method for calculating the phase from measurements taken at a single spatial grid point. The phase is calculated to increase linearly between event times when the measurement time series intersects the Poincaré section. The difference between the calculated phase and the isochron-based phase, resulting from the discrepancy between the isochron and the Poincaré section, is evaluated using a linear approximation near the limit-cycle solution. We found that the difference is small when measurements are taken from regions that dominate the rhythms of the entire spatiotemporal dynamics. Furthermore, we investigate an alternative method where the Poincaré section is applied to time series obtained through orthogonal decomposition of the entire spatiotemporal dynamics. We present two decomposition schemes that utilize principal component analysis. For illustration, the phase is calculated from the measurements of spatiotemporal dynamics exhibiting target waves or oscillating spots, simulated by weakly coupled FitzHugh-Nagumo reaction-diffusion models.
Collapse
Affiliation(s)
- Takahiro Arai
- Japan Agency for Marine-Earth Science and Technology, Center for Mathematical Science and Advanced Technology, Yokohama 236-0001, Japan
| | - Yoji Kawamura
- Japan Agency for Marine-Earth Science and Technology, Center for Mathematical Science and Advanced Technology, Yokohama 236-0001, Japan
| | - Toshio Aoyagi
- Kyoto University, Graduate School of Informatics, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Irankhah R, Mehrabbeik M, Parastesh F, Rajagopal K, Jafari S, Kurths J. Synchronization enhancement subjected to adaptive blinking coupling. CHAOS (WOODBURY, N.Y.) 2024; 34:023120. [PMID: 38377293 DOI: 10.1063/5.0188366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Synchronization holds a significant role, notably within chaotic systems, in various contexts where the coordinated behavior of systems plays a pivotal and indispensable role. Hence, many studies have been dedicated to investigating the underlying mechanism of synchronization of chaotic systems. Networks with time-varying coupling, particularly those with blinking coupling, have been proven essential. The reason is that such coupling schemes introduce dynamic variations that enhance adaptability and robustness, making them applicable in various real-world scenarios. This paper introduces a novel adaptive blinking coupling, wherein the coupling adapts dynamically based on the most influential variable exhibiting the most significant average disparity. To ensure an equitable selection of the most effective coupling at each time instance, the average difference of each variable is normalized to the synchronous solution's range. Due to this adaptive coupling selection, synchronization enhancement is expected to be observed. This hypothesis is assessed within networks of identical systems, encompassing Lorenz, Rössler, Chen, Hindmarsh-Rose, forced Duffing, and forced van der Pol systems. The results demonstrated a substantial improvement in synchronization when employing adaptive blinking coupling, particularly when applying the normalization process.
Collapse
Affiliation(s)
- Reza Irankhah
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran
| | - Mahtab Mehrabbeik
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran
| | - Fatemeh Parastesh
- Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600069, India
| | - Karthikeyan Rajagopal
- Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600069, India
| | - Sajad Jafari
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran
- Health Technology Research Institute, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14473, Germany
- Institute of Physics, Humboldt University of Berlin, Berlin 12489, Germany
| |
Collapse
|
3
|
Parastesh F, Rajagopal K, Jafari S, Perc M, Schöll E. Blinking coupling enhances network synchronization. Phys Rev E 2022; 105:054304. [PMID: 35706266 DOI: 10.1103/physreve.105.054304] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
This paper studies the synchronization of a network with linear diffusive coupling, which blinks between the variables periodically. The synchronization of the blinking network in the case of sufficiently fast blinking is analyzed by showing that the stability of the synchronous solution depends only on the averaged coupling and not on the instantaneous coupling. To illustrate the effect of the blinking period on the network synchronization, the Hindmarsh-Rose model is used as the dynamics of nodes. The synchronization is investigated by considering constant single-variable coupling, averaged coupling, and blinking coupling through a linear stability analysis. It is observed that by decreasing the blinking period, the required coupling strength for synchrony is reduced. It equals that of the averaged coupling model times the number of variables. However, in the averaged coupling, all variables participate in the coupling, while in the blinking model only one variable is coupled at any time. Therefore, the blinking coupling leads to an enhanced synchronization in comparison with the single-variable coupling. Numerical simulations of the average synchronization error of the network confirm the results obtained from the linear stability analysis.
Collapse
Affiliation(s)
- Fatemeh Parastesh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | | | - Sajad Jafari
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
- Health Technology Research Institute, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Complexity Science Hub Vienna, Josefstädterstraße 39, 1080 Vienna, Austria
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, D-10115 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, D-14473 Potsdam, Germany
| |
Collapse
|
4
|
Bahramian A, Parastesh F, Pham VT, Kapitaniak T, Jafari S, Perc M. Collective behavior in a two-layer neuronal network with time-varying chemical connections that are controlled by a Petri net. CHAOS (WOODBURY, N.Y.) 2021; 31:033138. [PMID: 33810759 DOI: 10.1063/5.0045840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we propose and study a two-layer network composed of a Petri net in the first layer and a ring of coupled Hindmarsh-Rose neurons in the second layer. Petri nets are appropriate platforms not only for describing sequential processes but also for modeling information circulation in complex systems. Networks of neurons, on the other hand, are commonly used to study synchronization and other forms of collective behavior. Thus, merging both frameworks into a single model promises fascinating new insights into neuronal collective behavior that is subject to changes in network connectivity. In our case, the Petri net in the first layer manages the existence of excitatory and inhibitory links among the neurons in the second layer, thereby making the chemical connections time-varying. We focus on the emergence of different types of collective behavior in the model, such as synchronization, chimeras, and solitary states, by considering different inhibitory and excitatory tokens in the Petri net. We find that the existence of only inhibitory or excitatory tokens disturbs the synchronization of electrically coupled neurons and leads toward chimera and solitary states.
Collapse
Affiliation(s)
- Alireza Bahramian
- Department of Biomedical Engineering, Amirkabir University of Technology, No. 350, Hafez Ave., Valiasr Square, Tehran 159163-4311, Iran
| | - Fatemeh Parastesh
- Department of Biomedical Engineering, Amirkabir University of Technology, No. 350, Hafez Ave., Valiasr Square, Tehran 159163-4311, Iran
| | - Viet-Thanh Pham
- Nonlinear Systems and Applications, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| | - Tomasz Kapitaniak
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Sajad Jafari
- Center for Computational Biology, Chennai Institute of Technology, Chennai, Tamil Nadu 600069, India
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
5
|
Lukarski D, Ginovska M, Spasevska H, Stankovski T. Time Window Determination for Inference of Time-Varying Dynamics: Application to Cardiorespiratory Interaction. Front Physiol 2020; 11:341. [PMID: 32411009 PMCID: PMC7198895 DOI: 10.3389/fphys.2020.00341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Interacting dynamical systems abound in nature, with examples ranging from biology and population dynamics, through physics and chemistry, to communications and climate. Often their states, parameters and functions are time-varying, because such systems interact with other systems and the environment, exchanging information and matter. A common problem when analysing time-series data from dynamical systems is how to determine the length of the time window for the analysis. When one needs to follow the time-variability of the dynamics, or the dynamical parameters and functions, the time window needs to be resolved first. We tackled this problem by introducing a method for adaptive determination of the time window for interacting oscillators, as modeled and scaled for the cardiorespiratory interaction. By investigating a system of coupled phase oscillators and utilizing the Dynamical Bayesian Inference method, we propose a procedure to determine the time window and the propagation parameter of the covariance matrix. The optimal values are determined so that the inferred parameters follow the dynamics of the actual ones and at the same time the error of the inference represented by the covariance matrix is minimal. The effectiveness of the methodology is presented on a system of coupled limit-cycle oscillators and on the cardiorespiratory interaction. Three cases of cardiorespiratory interaction were considered-measurement with spontaneous free breathing, one with periodic sine breathing and one with a-periodic time-varying breathing. The results showed that the cardiorespiratory coupling strength and similarity of form of coupling functions have greater values for slower breathing, and this variability follows continuously the change of the breathing frequency. The method can be applied effectively to other time-varying oscillatory interactions and carries important implications for analysis of general dynamical systems.
Collapse
Affiliation(s)
- Dushko Lukarski
- Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Macedonia
- University Clinic for Radiotherapy and Oncology, Skopje, Macedonia
| | - Margarita Ginovska
- Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Hristina Spasevska
- Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Tomislav Stankovski
- Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Macedonia
- Department of Physics, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
6
|
Sebek M, Kawamura Y, Nott AM, Kiss IZ. Anti-phase collective synchronization with intrinsic in-phase coupling of two groups of electrochemical oscillators. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190095. [PMID: 31656145 PMCID: PMC6833994 DOI: 10.1098/rsta.2019.0095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 05/02/2023]
Abstract
The synchronization of two groups of electrochemical oscillators is investigated during the electrodissolution of nickel in sulfuric acid. The oscillations are coupled through combined capacitance and resistance, so that in a single pair of oscillators (nearly) in-phase synchronization is obtained. The internal coupling within each group is relatively strong, but there is a phase difference between the fast and slow oscillators. The external coupling between the two groups is weak. The experiments show that the two groups can exhibit (nearly) anti-phase collective synchronization. Such synchronization occurs only when the external coupling is weak, and the interactions are delayed by the capacitance. When the external coupling is restricted to those between the fast and the slow elements, the anti-phase synchronization is more prominent. The results are interpreted with phase models. The theory predicts that, for anti-phase collective synchronization, there must be a minimum internal phase difference for a given shift in the phase coupling function. This condition is less stringent with external fast-to-slow coupling. The results provide a framework for applications of collective phase synchronization in modular networks where weak coupling between the groups can induce synchronization without rearrangements of the phase dynamics within the groups. This article is part of the theme issue 'Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'.
Collapse
Affiliation(s)
- Michael Sebek
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St Louis, MO 63103, USA
| | - Yoji Kawamura
- Center for Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, 236-0001 Yokohama, Japan
| | - Ashley M. Nott
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St Louis, MO 63103, USA
| | - István Z. Kiss
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St Louis, MO 63103, USA
| |
Collapse
|
7
|
Stankovski T, Pereira T, McClintock PVE, Stefanovska A. Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190039. [PMID: 31656134 PMCID: PMC6834002 DOI: 10.1098/rsta.2019.0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Dynamical systems are widespread, with examples in physics, chemistry, biology, population dynamics, communications, climatology and social science. They are rarely isolated but generally interact with each other. These interactions can be characterized by coupling functions-which contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how each interaction occurs. Coupling functions can be used, not only to understand, but also to control and predict the outcome of the interactions. This theme issue assembles ground-breaking work on coupling functions by leading scientists. After overviewing the field and describing recent advances in the theory, it discusses novel methods for the detection and reconstruction of coupling functions from measured data. It then presents applications in chemistry, neuroscience, cardio-respiratory physiology, climate, electrical engineering and social science. Taken together, the collection summarizes earlier work on coupling functions, reviews recent developments, presents the state of the art, and looks forward to guide the future evolution of the field. This article is part of the theme issue 'Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'.
Collapse
Affiliation(s)
- Tomislav Stankovski
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
- Faculty of Medicine, Ss Cyril and Methodius University, Skopje 1000, Macedonia
| | - Tiago Pereira
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
- Institute of Mathematical and Computer Sciences, University of Sao Paulo, Sao Carlos 13566-590, Brazil
| | | | | |
Collapse
|
8
|
Hagos Z, Stankovski T, Newman J, Pereira T, McClintock PVE, Stefanovska A. Synchronization transitions caused by time-varying coupling functions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190275. [PMID: 31656137 PMCID: PMC6834000 DOI: 10.1098/rsta.2019.0275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Interacting dynamical systems are widespread in nature. The influence that one such system exerts on another is described by a coupling function; and the coupling functions extracted from the time-series of interacting dynamical systems are often found to be time-varying. Although much effort has been devoted to the analysis of coupling functions, the influence of time-variability on the associated dynamics remains largely unexplored. Motivated especially by coupling functions in biology, including the cardiorespiratory and neural delta-alpha coupling functions, this paper offers a contribution to the understanding of effects due to time-varying interactions. Through both numerics and mathematically rigorous theoretical consideration, we show that for time-variable coupling functions with time-independent net coupling strength, transitions into and out of phase- synchronization can occur, even though the frozen coupling functions determine phase-synchronization solely by virtue of their net coupling strength. Thus the information about interactions provided by the shape of coupling functions plays a greater role in determining behaviour when these coupling functions are time-variable. This article is part of the theme issue 'Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'.
Collapse
Affiliation(s)
- Zeray Hagos
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos 13566-590, Brazil
- Department of Mathematics, Mekelle University, Mekelle, Ethiopia
| | - Tomislav Stankovski
- Faculty of Medicine, Ss Cyril and Methodius University, 50 Divizija 6, Skopje, North Macedonia
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Julian Newman
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Tiago Pereira
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos 13566-590, Brazil
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
9
|
Khandoker AH, Schulz S, Al-Angari HM, Voss A, Kimura Y. Alterations in Maternal-Fetal Heart Rate Coupling Strength and Directions in Abnormal Fetuses. Front Physiol 2019; 10:482. [PMID: 31105586 PMCID: PMC6498890 DOI: 10.3389/fphys.2019.00482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/08/2019] [Indexed: 11/24/2022] Open
Abstract
Because fetal gas exchange takes place via the maternal placenta, there has been growing interests in investigating the patterns and directions of maternal-fetal cardiac coupling to better understand the mechanisms of placental gas transfer. We recently reported the evidence of short-term maternal–fetal cardiac couplings in normal fetuses by using Normalized Short Time Partial Directed Coherence (NSTPDC) technique. Our results have shown weakening of coupling from fetal heart rate to maternal heart rate as the fetal development progresses while the influence from maternal to fetal heart rate coupling behaves oppositely as it shows increasing coupling strength that reaches its maximum at mid gestation. The aim of this study is to test if maternal-fetal coupling patterns change in various types of abnormal cases of pregnancies. We applied NSTPDC on simultaneously recorded fetal and maternal beat-by-beat heart rates collected from fetal and maternal ECG signals of 66 normal and 19 abnormal pregnancies. NSTPDC fetal-to-maternal coupling analyses revealed significant differences between the normal and abnormal cases (normal: normalized factor (NF) = −0.21 ± 0.85, fetus-to-mother coupling area (A_fBBI→ mBBI) = 0.44 ± 0.13, mother-to-fetus coupling area (A_mBBI→ fBBI) = 0.46 ± 0.12; abnormal: NF = −1.66 ± 0.77, A_fBBI→ mBBI = 0.08 ± 0.12, A_mBBI→ fBBI = 0.66 ± 0.24; p < 0.01). In conclusion, maternal-fetal cardiac coupling strength and direction and their associations with regulatory mechanisms (patterns) of developing autonomic nervous system function could be novel clinical markers of healthy prenatal development and its deviation. However, further research is required on larger samples of abnormal cases.
Collapse
Affiliation(s)
- Ahsan H Khandoker
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Steffen Schulz
- Institute of Innovative Health Technologies IGHT, Ernst-Abbe-Hochschule, Jena, Germany
| | - Haitham M Al-Angari
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Andreas Voss
- Institute of Innovative Health Technologies IGHT, Ernst-Abbe-Hochschule, Jena, Germany
| | - Yoshitaka Kimura
- Institute of International Advanced Interdisciplinary Research, Tohoku University School of Medicine, Sendai, Japan.,Department of Gynecology and Obstetrics, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
10
|
Stankovski T, Ticcinelli V, McClintock PVE, Stefanovska A. Neural Cross-Frequency Coupling Functions. Front Syst Neurosci 2017; 11:33. [PMID: 28663726 PMCID: PMC5471314 DOI: 10.3389/fnsys.2017.00033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
Although neural interactions are usually characterized only by their coupling strength and directionality, there is often a need to go beyond this by establishing the functional mechanisms of the interaction. We introduce the use of dynamical Bayesian inference for estimation of the coupling functions of neural oscillations in the presence of noise. By grouping the partial functional contributions, the coupling is decomposed into its functional components and its most important characteristics-strength and form-are quantified. The method is applied to characterize the δ-to-α phase-to-phase neural coupling functions from electroencephalographic (EEG) data of the human resting state, and the differences that arise when the eyes are either open (EO) or closed (EC) are evaluated. The δ-to-α phase-to-phase coupling functions were reconstructed, quantified, compared, and followed as they evolved in time. Using phase-shuffled surrogates to test for significance, we show how the strength of the direct coupling, and the similarity and variability of the coupling functions, characterize the EO and EC states for different regions of the brain. We confirm an earlier observation that the direct coupling is stronger during EC, and we show for the first time that the coupling function is significantly less variable. Given the current understanding of the effects of e.g., aging and dementia on δ-waves, as well as the effect of cognitive and emotional tasks on α-waves, one may expect that new insights into the neural mechanisms underlying certain diseases will be obtained from studies of coupling functions. In principle, any pair of coupled oscillations could be studied in the same way as those shown here.
Collapse
Affiliation(s)
- Tomislav Stankovski
- Nonlinear and Biomedical Physics Group, Department of Physics, Lancaster UniversityLancaster, United Kingdom
- Faculty of Medicine, Ss Cyril and Methodius UniversitySkopje, Macedonia
| | - Valentina Ticcinelli
- Nonlinear and Biomedical Physics Group, Department of Physics, Lancaster UniversityLancaster, United Kingdom
| | - Peter V. E. McClintock
- Nonlinear and Biomedical Physics Group, Department of Physics, Lancaster UniversityLancaster, United Kingdom
| | - Aneta Stefanovska
- Nonlinear and Biomedical Physics Group, Department of Physics, Lancaster UniversityLancaster, United Kingdom
| |
Collapse
|