1
|
Dong T, Kotsi K, Xu T, Kobayashi T, Moriarty A, Angeli P, McRobbie I, Striolo A. Flowerlike Spreading of Micellar Films during Emulsion Drop Evaporation. PHYSICAL REVIEW LETTERS 2024; 133:174001. [PMID: 39530800 DOI: 10.1103/physrevlett.133.174001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
We investigated the film spreading during the evaporation of submillimeter oil-in-water emulsion droplets on a solid surface, and observed a novel phenomenon where the film follows a two-layer spreading. In combination with the instability at the film front, the spreading front acquires a flowerlike pattern. The emergence of the two-layer structure is attributed to micelles within the oil film that yield an oscillating disjoining pressure. By considering both the slipping condition and the disjoining pressure, a scaling analysis is carried out that agrees well with the observed film spreading dynamics. The film spreading follows Tanner's law initially, while it becomes faster at a later stage, where the film radius follows r∼t^{1/2} for weak slip and r∼t^{3/8} for strong slip conditions.
Collapse
|
2
|
Areshi M, Tseluiko D, Thiele U, Goddard BD, Archer AJ. Binding potential and wetting behavior of binary liquid mixtures on surfaces. Phys Rev E 2024; 109:024801. [PMID: 38491689 DOI: 10.1103/physreve.109.024801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/08/2024] [Indexed: 03/18/2024]
Abstract
We present a theory for the interfacial wetting phase behavior of binary liquid mixtures on rigid solid substrates, applicable to both miscible and immiscible mixtures. In particular, we calculate the binding potential as a function of the adsorptions, i.e., the excess amounts of each of the two liquids at the substrate. The binding potential fully describes the corresponding interfacial thermodynamics. Our approach is based on classical density functional theory. Binary liquid mixtures can exhibit complex bulk phase behavior, including both liquid-liquid and vapor-liquid phase separation, depending on the nature of the interactions among all the particles of the two different liquids, the temperature, and the chemical potentials. Here we show that the interplay between the bulk phase behavior of the mixture and the properties of the interactions with the substrate gives rise to a wide variety of interfacial phase behaviors, including mixing and demixing situations. We find situations where the final state is a coexistence of up to three different phases. We determine how the liquid density profiles close to the substrate change as the interaction parameters are varied and how these determine the form of the binding potential, which in certain cases can be a multivalued function of the adsorptions. We also present profiles for sessile droplets of both miscible and immiscible binary liquids.
Collapse
Affiliation(s)
- Mounirah Areshi
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
- Department of Mathematics, Faculty of Science, University of Tabuk, P. O. Box 741, Tabuk 71491, Saudi Arabia
| | - Dmitri Tseluiko
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
- Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Uwe Thiele
- Institute of Theoretical Physics, University of Münster, 48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), University of Münster, 48149 Münster, Germany
| | - Benjamin D Goddard
- School of Mathematics and the Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Andrew J Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
- Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
3
|
MacDowell LG. Surface tension of bulky colloids, capillarity under gravity, and the microscopic origin of the Kardar-Parisi-Zhang equation. Phys Rev E 2023; 108:L022801. [PMID: 37723748 DOI: 10.1103/physreve.108.l022801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/26/2023] [Indexed: 09/20/2023]
Abstract
Experimental measurements of the surface tension of colloidal interfaces have long been in conflict with computer simulations. In this Letter we show that the surface tension of colloids as measured by surface fluctuations picks up a gravity-dependent contribution which removes the discrepancy. The presence of this term puts a strong constraint on the structure of the interface which allows one to identify corrections to the fundamental equation of equilibrium capillarity and deduce bottom up the microscopic origin of a growth model with close relation to the Kardar-Parisi-Zhang equation.
Collapse
Affiliation(s)
- Luis G MacDowell
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Sibley DN, Llombart P, Noya EG, Archer AJ, MacDowell LG. How ice grows from premelting films and water droplets. Nat Commun 2021; 12:239. [PMID: 33431836 PMCID: PMC7801427 DOI: 10.1038/s41467-020-20318-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 11/14/2020] [Indexed: 11/08/2022] Open
Abstract
Close to the triple point, the surface of ice is covered by a thin liquid layer (so-called quasi-liquid layer) which crucially impacts growth and melting rates. Experimental probes cannot observe the growth processes below this layer, and classical models of growth by vapor deposition do not account for the formation of premelting films. Here, we develop a mesoscopic model of liquid-film mediated ice growth, and identify the various resulting growth regimes. At low saturation, freezing proceeds by terrace spreading, but the motion of the buried solid is conveyed through the liquid to the outer liquid-vapor interface. At higher saturations water droplets condense, a large crater forms below, and freezing proceeds undetectably beneath the droplet. Our approach is a general framework that naturally models freezing close to three phase coexistence and provides a first principle theory of ice growth and melting which may prove useful in the geosciences.
Collapse
Affiliation(s)
- David N Sibley
- Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Pablo Llombart
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, Madrid, 28006, Spain
- Departamento de Química Física (Unidad de I+D+i Asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Eva G Noya
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, Madrid, 28006, Spain
| | - Andrew J Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Luis G MacDowell
- Departamento de Química Física (Unidad de I+D+i Asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
5
|
Yin H, Sibley DN, Archer AJ. Binding potentials for vapour nanobubbles on surfaces using density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:315102. [PMID: 30978706 DOI: 10.1088/1361-648x/ab18e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We calculate density profiles of a simple model fluid in contact with a planar surface using density functional theory (DFT), in particular for the case where there is a vapour layer intruding between the wall and the bulk liquid. We apply the method of Hughes et al (2015 J. Chem. Phys. 142 074702) to calculate the density profiles for varying (specified) amounts of the vapour adsorbed at the wall. This is equivalent to varying the thickness h of the vapour at the surface. From the resulting sequence of density profiles we calculate the thermodynamic grand potential as h is varied and thereby determine the binding potential as a function of h. The binding potential obtained via this coarse-graining approach allows us to determine the disjoining pressure in the film and also to predict the shape of vapour nano-bubbles on the surface. Our microscopic DFT based approach captures information from length scales much smaller than some commonly used models in continuum mechanics.
Collapse
Affiliation(s)
- Hanyu Yin
- Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | | | | |
Collapse
|
6
|
Continuation for Thin Film Hydrodynamics and Related Scalar Problems. COMPUTATIONAL METHODS IN APPLIED SCIENCES 2019. [DOI: 10.1007/978-3-319-91494-7_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Thiele U. Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Thiele U, Snoeijer JH, Trinschek S, John K. Equilibrium Contact Angle and Adsorption Layer Properties with Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7210-7221. [PMID: 29758158 DOI: 10.1021/acs.langmuir.8b00513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The three-phase contact line of a droplet on a smooth surface can be characterized by the Young equation. It relates the interfacial energies to the macroscopic contact angle θe. On the mesoscale, wettability is modeled by a film-height-dependent wetting energy f( h). Macro- and mesoscale descriptions are consistent if γ cos θe = γ + f( ha), where γ and ha are the liquid-gas interface energy and the thickness of the equilibrium liquid adsorption layer, respectively. Here, we derive a similar consistency condition for the case of a liquid covered by an insoluble surfactant. At equilibrium, the surfactant is spatially inhomogeneously distributed, implying a nontrivial dependence of θe on surfactant concentration. We derive macroscopic and mesoscopic descriptions of a contact line at equilibrium and show that they are consistent only if a particular dependence of the wetting energy on the surfactant concentration is imposed. This is illustrated by a simple example of dilute surfactants, for which we show excellent agreement between theory and time-dependent numerical simulations.
Collapse
Affiliation(s)
| | - Jacco H Snoeijer
- Physics of Fluids Group and J. M. Burgers Centre for Fluid Dynamics , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Sarah Trinschek
- Université Grenoble-Alpes , CNRS, Laboratoire Interdisciplinaire de Physique , 38000 Grenoble , France
| | - Karin John
- Université Grenoble-Alpes , CNRS, Laboratoire Interdisciplinaire de Physique , 38000 Grenoble , France
| |
Collapse
|
9
|
Yilixiati S, Rafiq R, Zhang Y, Sharma V. Influence of Salt on Supramolecular Oscillatory Structural Forces and Stratification in Micellar Freestanding Films. ACS NANO 2018; 12:1050-1061. [PMID: 29314826 DOI: 10.1021/acsnano.7b05391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Freestanding films of soft matter containing micelles, nanoparticles, polyelectrolyte-surfactant complexes, bilayers, and smectic liquid crystals exhibit stratification. Stepwise thinning and coexisting thick-thin regions associated with drainage via stratification are attributed to the confinement-induced structuring and layering of supramolecular structures, which contribute supramolecular oscillatory structural forces. In freestanding micellar films, formed by a solution of an ionic surfactant above its critical micelle concentration, both interfacial adsorption and the micelle size and shape are determined by the concentration of surfactant and of added electrolytes. Although the influence of surfactant concentration on stratification has been investigated before, the influence of added salt, at concentrations typically found in water used on a daily basis, has not been investigated yet. In this contribution, we elucidate how the addition of salt affects stepwise thinning: step size, number of steps, as well as the shape and size of nanoscopic nonflat structures such as mesas in micellar foam films formed with aqueous solutions of anionic surfactant (sodium dodecyl sulfate (SDS)). The nanoscopic thickness variations and transitions are visualized and analyzed using IDIOM (Interferometry Digital Imaging Optical Microscopy) protocols with exquisite spatiotemporal resolution (thickness ∼1 nm, time <1 ms). In contrast to nanoparticle dispersions that show no influence of salt on step size, we find that the addition of salt to micellar freestanding films results in a decrease in step size as well as the number of stepwise transitions, in addition to changes in nucleation and growth of mesas, all driven by the corresponding change in supramolecular oscillatory structural forces.
Collapse
Affiliation(s)
- Subinuer Yilixiati
- Chemical Engineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Rabees Rafiq
- Chemical Engineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Yiran Zhang
- Chemical Engineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Vivek Sharma
- Chemical Engineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| |
Collapse
|
10
|
Chalmers C, Smith R, Archer AJ. Dynamical Density Functional Theory for the Evaporation of Droplets of Nanoparticle Suspension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14490-14501. [PMID: 29155593 DOI: 10.1021/acs.langmuir.7b03096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We develop a lattice gas model for the drying of droplets of a nanoparticle suspension on a planar surface, using dynamical density functional theory (DDFT) to describe the time evolution of the solvent and nanoparticle density profiles. The DDFT assumes a diffusive dynamics but does not include the advective hydrodynamics of the solvent, so the model is relevant to highly viscous or near to equilibrium systems. Nonetheless, we see an equivalent of the coffee-ring stain effect, but in the present model it occurs for thermodynamic rather the fluid-mechanical reasons. The model incorporates the effect of phase separation and vertical density variations within the droplet and the consequence of these on the nanoparticle deposition pattern on the surface. We show how to include the effect of slip or no-slip at the surface and how this is related to the receding contact angle. We also determine how the equilibrium contact angle depends on the microscopic interaction parameters.
Collapse
Affiliation(s)
- C Chalmers
- Department of Mathematical Sciences, Loughborough University , Loughborough LE11 3TU, United Kingdom
| | - R Smith
- Department of Mathematical Sciences, Loughborough University , Loughborough LE11 3TU, United Kingdom
| | - A J Archer
- Department of Mathematical Sciences, Loughborough University , Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
11
|
Buller O, Tewes W, Archer AJ, Heuer A, Thiele U, Gurevich SV. Nudged elastic band calculation of the binding potential for liquids at interfaces. J Chem Phys 2017; 147:024701. [PMID: 28711062 DOI: 10.1063/1.4990702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The wetting behavior of a liquid on solid substrates is governed by the nature of the effective interaction between the liquid-gas and the solid-liquid interfaces, which is described by the binding or wetting potential g(h) which is an excess free energy per unit area that depends on the liquid film height h. Given a microscopic theory for the liquid, to determine g(h), one must calculate the free energy for liquid films of any given value of h, i.e., one needs to create and analyze out-of-equilibrium states, since at equilibrium there is a unique value of h, specified by the temperature and chemical potential of the surrounding gas. Here we introduce a Nudged Elastic Band (NEB) approach to calculate g(h) and illustrate the method by applying it in conjunction with a microscopic lattice density functional theory for the liquid. We also show that the NEB results are identical to those obtained with an established method based on using a fictitious additional potential to stabilize the non-equilibrium states. The advantages of the NEB approach are discussed.
Collapse
Affiliation(s)
- Oleg Buller
- Institute for Physical Chemistry, University of Münster, Correnstr. 28/30, 48149 Münster, Germany
| | - Walter Tewes
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - Andrew J Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Andreas Heuer
- Institute for Physical Chemistry, University of Münster, Correnstr. 28/30, 48149 Münster, Germany
| | - Uwe Thiele
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - Svetlana V Gurevich
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| |
Collapse
|
12
|
Tewes W, Buller O, Heuer A, Thiele U, Gurevich SV. Comparing kinetic Monte Carlo and thin-film modeling of transversal instabilities of ridges on patterned substrates. J Chem Phys 2017. [DOI: 10.1063/1.4977739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Walter Tewes
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - Oleg Buller
- Institute for Physical Chemistry, University of Münster, Correnstr. 28/30, 48149 Münster, Germany
| | - Andreas Heuer
- Institute for Physical Chemistry, University of Münster, Correnstr. 28/30, 48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), University of Münster, Corrensstr. 2, 48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Uwe Thiele
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), University of Münster, Corrensstr. 2, 48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Svetlana V. Gurevich
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), University of Münster, Corrensstr. 2, 48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| |
Collapse
|
13
|
Hughes AP, Thiele U, Archer AJ. Influence of the fluid structure on the binding potential: Comparing liquid drop profiles from density functional theory with results from mesoscopic theory. J Chem Phys 2017; 146:064705. [DOI: 10.1063/1.4974832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|