1
|
Gosteva L, Tarpin M, Wschebor N, Canet L. Inviscid fixed point of the multidimensional Burgers-Kardar-Parisi-Zhang equation. Phys Rev E 2024; 110:054118. [PMID: 39690666 DOI: 10.1103/physreve.110.054118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024]
Abstract
A new scaling regime characterized by a z=1 dynamical critical exponent has been reported in several numerical simulations of the one-dimensional Kardar-Parisi-Zhang and noisy Burgers equations. In these works, this scaling, differing from the well-known KPZ one z=3/2, was found to emerge in the tensionless limit for the interface and in the inviscid limit for the fluid. Based on functional renormalization group, the origin of this scaling has been elucidated. It was shown to be controlled by a yet unpredicted fixed point of the one-dimensional Burgers-KPZ equation, termed inviscid Burgers (IB) fixed point. The associated universal properties, including the scaling function, were calculated. All these findings were restricted to d=1, and it raises the intriguing question of the fate of this new IB fixed point in higher dimensions. In this work, we address this issue and analyze the multidimensional Burgers-KPZ equation using functional renormalization group. We show that the IB fixed point exists in all dimensions d≥0, and that it controls the large momentum behavior of the correlation functions in the inviscid limit. It turns out that it yields in all d the same super-universal value z=1 for the dynamical exponent.
Collapse
|
2
|
Fontaine C, Vercesi F, Brachet M, Canet L. Unpredicted Scaling of the One-Dimensional Kardar-Parisi-Zhang Equation. PHYSICAL REVIEW LETTERS 2023; 131:247101. [PMID: 38181147 DOI: 10.1103/physrevlett.131.247101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/17/2023] [Indexed: 01/07/2024]
Abstract
The celebrated Kardar-Parisi-Zhang (KPZ) equation describes the kinetic roughening of stochastically growing interfaces. In one dimension, the KPZ equation is exactly solvable and its statistical properties are known to an exquisite degree. Yet recent numerical simulations in the tensionless (or inviscid) limit of the KPZ equation [C. Cartes et al., The Galerkin-truncated Burgers equation: Crossover from inviscid-thermalized to Kardar-Parisi-Zhang scaling, Phil. Trans. R. Soc. A 380, 20210090 (2022).PTRMAD1364-503X10.1098/rsta.2021.0090; E. Rodríguez-Fernández et al., Anomalous ballistic scaling in the tensionless or inviscid Kardar-Parisi-Zhang equation, Phys. Rev. E 106, 024802 (2022).PRESCM2470-004510.1103/PhysRevE.106.024802] unveiled a new scaling, with a critical dynamical exponent z=1 different from the KPZ one z=3/2. In this Letter, we show that this scaling is controlled by a fixed point which had been missed so far and which corresponds to an infinite nonlinear coupling. Using the functional renormalization group (FRG), we demonstrate the existence of this fixed point and show that it yields z=1. We calculate the correlation function and associated scaling function at this fixed point, providing both a numerical solution of the FRG equations within a reliable approximation, and an exact asymptotic form obtained in the limit of large wave numbers. Both scaling functions accurately match the one from the numerical simulations.
Collapse
Affiliation(s)
- Côme Fontaine
- Université Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
| | | | - Marc Brachet
- Université PSL, CNRS, Sorbonne Université, Université de Paris, LPENS, 75005, Paris, France
| | - Léonie Canet
- Université Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
- Institut Universitaire de France, 75000 Paris, France
| |
Collapse
|
3
|
Luo Y, Zeng C, Huang T, Ai BQ. Anomalous transport tuned through stochastic resetting in the rugged energy landscape of a chaotic system with roughness. Phys Rev E 2022; 106:034208. [PMID: 36266857 DOI: 10.1103/physreve.106.034208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Stochastic resetting causes kinetic phase transitions, whereas its underlying physical mechanism remains to be elucidated. We here investigate the anomalous transport of a particle moving in a chaotic system with a stochastic resetting and a rough potential and focus on how the stochastic resetting, roughness, and nonequilibrium noise affect the transports of the particle. We uncover the physical mechanism for stochastic resetting resulting in the anomalous transport in a nonlinear chaotic system: The particle is reset to a new basin of attraction which may be different from the initial basin of attraction from the view of dynamics. From the view of the energy landscape, the particle is reset to a new energy state of the energy landscape which may be different from the initial energy state. This resetting can lead to a kinetic phase transition between no transport and a finite net transport or between negative mobility and positive mobility. The roughness and noise also lead to the transition. Based on the mechanism, the transport of the particle can be tuned by these parameters. For example, the combination of the stochastic resetting, roughness, and noise can enhance the transport and tune negative mobility, the enhanced stability of the system, and the resonant-like activity. We analyze these results through variances (e.g., mean-squared velocity, etc.) and correlation functions (i.e., velocity autocorrelation function, position-velocity correlation function, etc.). Our results can be extensively applied in the biology, physics, and chemistry, even social system.
Collapse
Affiliation(s)
- Yuhui Luo
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
- School of Physics and Information Engineering, Zhaotong University, Zhaotong 657000, China
| | - Chunhua Zeng
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Huang
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement, SPTE, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
4
|
Bandak D, Goldenfeld N, Mailybaev AA, Eyink G. Dissipation-range fluid turbulence and thermal noise. Phys Rev E 2022; 105:065113. [PMID: 35854607 DOI: 10.1103/physreve.105.065113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/26/2022] [Indexed: 11/07/2022]
Abstract
We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence and estimate the scale at which they become important. As anticipated by Betchov in a prescient series of works more than six decades ago, this scale is about equal to the Kolmogorov length, even though that is several orders of magnitude above the mean free path. This result implies that the deterministic version of the incompressible Navier-Stokes equation is inadequate to describe the dissipation range of turbulence in molecular fluids. Within this range, the fluctuating hydrodynamics equation of Landau and Lifschitz is more appropriate. In particular, our analysis implies that both the exponentially decaying energy spectrum and the far-dissipation-range intermittency predicted by Kraichnan for deterministic Navier-Stokes will be generally replaced by Gaussian thermal equipartition at scales just below the Kolmogorov length. Stochastic shell model simulations at high Reynolds numbers verify our theoretical predictions and reveal furthermore that inertial-range intermittency can propagate deep into the dissipation range, leading to large fluctuations in the equipartition length scale. We explain the failure of previous scaling arguments for the validity of deterministic Navier-Stokes equations at any Reynolds number and we provide a mathematical interpretation and physical justification of the fluctuating Navier-Stokes equation as an "effective field theory" valid below some high-wave-number cutoff Λ, rather than as a continuum stochastic partial differential equation. At Reynolds number around a million, comparable to that in Earth's atmospheric boundary layer, the strongest turbulent excitations observed in our simulation penetrate down to a length scale of about eight microns, still two orders of magnitude greater than the mean free path of air. However, for longer observation times or for higher Reynolds numbers, more extreme turbulent events could lead to a local breakdown of fluctuating hydrodynamics.
Collapse
Affiliation(s)
- Dmytro Bandak
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nigel Goldenfeld
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Alexei A Mailybaev
- Instituto de Matemática Pura e Aplicada-IMPA, Rio de Janeiro, 22460-320, Brazil
| | - Gregory Eyink
- Department of Applied Mathematics & Statistics, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
5
|
Chevillard L. Regularized fractional Ornstein-Uhlenbeck processes and their relevance to the modeling of fluid turbulence. Phys Rev E 2017; 96:033111. [PMID: 29346948 DOI: 10.1103/physreve.96.033111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Motivated by the modeling of the temporal structure of the velocity field in a highly turbulent flow, we propose and study a linear stochastic differential equation that involves the ingredients of an Ornstein-Uhlenbeck process, supplemented by a fractional Gaussian noise, of parameter H, regularized over a (small) time scale ε>0. A peculiar correlation between these two plays a key role in the establishment of the statistical properties of its solution. We show that this solution reaches a stationary regime, which marginals, including variance and increment variance, remain bounded when ε→0. In particular, in this limit, for any H∈]0,1[, we show that the increment variance behaves at small scales as the one of a fractional Brownian motion of same parameter H. From the theoretical side, this approach appears especially well suited to deal with the (very) rough case H<1/2, including the boundary value H=0, and to design simple and efficient numerical simulations.
Collapse
Affiliation(s)
- Laurent Chevillard
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, 46 allée d'Italie F-69342 Lyon, France
| |
Collapse
|
6
|
Mathey S, Agoritsas E, Kloss T, Lecomte V, Canet L. Kardar-Parisi-Zhang equation with short-range correlated noise: Emergent symmetries and nonuniversal observables. Phys Rev E 2017; 95:032117. [PMID: 28415329 DOI: 10.1103/physreve.95.032117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 11/07/2022]
Abstract
We investigate the stationary-state fluctuations of a growing one-dimensional interface described by the Kardar-Parisi-Zhang (KPZ) dynamics with a noise featuring smooth spatial correlations of characteristic range ξ. We employ nonperturbative functional renormalization group methods to resolve the properties of the system at all scales. We show that the physics of the standard (uncorrelated) KPZ equation emerges on large scales independently of ξ. Moreover, the renormalization group flow is followed from the initial condition to the fixed point, that is, from the microscopic dynamics to the large-distance properties. This provides access to the small-scale features (and their dependence on the details of the noise correlations) as well as to the universal large-scale physics. In particular, we compute the kinetic energy spectrum of the stationary state as well as its nonuniversal amplitude. The latter is experimentally accessible by measurements at large scales and retains a signature of the microscopic noise correlations. Our results are compared to previous analytical and numerical results from independent approaches. They are in agreement with direct numerical simulations for the kinetic energy spectrum as well as with the prediction, obtained with the replica trick by Gaussian variational method, of a crossover in ξ of the nonuniversal amplitude of this spectrum.
Collapse
Affiliation(s)
- Steven Mathey
- LPMMC, Université Grenoble Alpes, and CNRS, 38042 Grenoble, France
| | - Elisabeth Agoritsas
- LIPhy, Université Grenoble Alpes, and CNRS, 38042 Grenoble, France.,Laboratoire de Physique Théorique, ENS, PSL University; UPMC, Sorbonne Universités; and CNRS, 75005 Paris, France
| | - Thomas Kloss
- INAC-PHELIQS, Université Grenoble Alpes and CEA, 38000 Grenoble, France
| | - Vivien Lecomte
- LIPhy, Université Grenoble Alpes, and CNRS, 38042 Grenoble, France.,LPMA, Université Paris Diderot, Université Pierre et Marie Curie, and CNRS, 75013 Paris, France
| | - Léonie Canet
- LPMMC, Université Grenoble Alpes, and CNRS, 38042 Grenoble, France
| |
Collapse
|