1
|
Ma C, Wu J, Gu X, Yang L. High-order flux reconstruction thermal lattice Boltzmann flux solver for simulation of incompressible thermal flows. Phys Rev E 2022; 106:035301. [PMID: 36266878 DOI: 10.1103/physreve.106.035301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
In this paper, a high-order solver combining the flux reconstruction (FR) method and the thermal lattice Boltzmann flux solver (FRTLBFS) is developed for accurately and efficiently simulating incompressible thermal flows. The conservative differential equations recovered from Chapman-Enskog analysis of the thermal lattice Boltzmann equation are solved by the high-order FR method. The thermal lattice Boltzmann method is only applied to reconstruct the local solution used for evaluating fluxes at the solution and flux points. Unlike the traditional Navier-Stokes-Boussinesq (NSB) solvers where the inviscid and viscous terms are treated separately, the inviscid and viscous fluxes in the current FRTLBFS are coupled and computed uniformly. In comparison with the recently developed high-order flux reconstruction thermal lattice Boltzmann method, the FRTLBFS holds advantages such as high-order accuracy, good stability, and compactness but is more efficient and low storage, since only macroscopic flow variables including density, velocity, and temperature are stored and evolved. In addition, the physical boundary conditions in FRTLBFS can be directly implemented by using the same method as in conventional NSB solvers. Numerical validations of the proposed method are implemented by simulating (a) the porous plate problem, (b) natural convection in a square cavity, (c) unsteady natural convection in a tall cavity, and (d) thermal lid-driven cavity flow. Numerical results demonstrate that the present solver is an attractive tool to simulate incompressible thermal flows due to its high-order accuracy, stability, and low memory cost.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China
- Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, and Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China
| | - Jie Wu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China
- Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, and Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China
| | - Xiangyu Gu
- China Academy of Launch Vehicle Technology, Nandahongmen Street 1, Beijing 100076, China
| | - Liming Yang
- Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, and Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China
| |
Collapse
|
2
|
Kallikounis NG, Dorschner B, Karlin IV. Particles on demand for flows with strong discontinuities. Phys Rev E 2022; 106:015301. [PMID: 35974602 DOI: 10.1103/physreve.106.015301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Particles-on-demand formulation of kinetic theory [B. Dorschner, F. Bösch and I. V. Karlin, Phys. Rev. Lett. 121, 130602 (2018)0031-900710.1103/PhysRevLett.121.130602] is used to simulate a variety of compressible flows with strong discontinuities in density, pressure, and velocity. Two modifications are applied to the original formulation of the particles-on-demand method. First, a regularization by Grad's projection of particles populations is combined with the reference frame transformations in order to enhance stability and accuracy. Second, a finite-volume scheme is implemented which allows tight control of mass, momentum, and energy conservation. The proposed model is validated with an array of challenging one- and two-dimensional benchmarks of compressible flows, including hypersonic and near-vacuum situations, Richtmyer-Meshkov instability, double Mach reflection, and astrophysical jet. Excellent performance of the modified particles-on-demand method is demonstrated beyond the limitations of other lattice Boltzmann-like approaches to compressible flows.
Collapse
Affiliation(s)
- N G Kallikounis
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - B Dorschner
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - I V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Reyhanian E. Multiscale analysis of the particles on demand kinetic model. Phys Rev E 2022; 106:015304. [PMID: 35974519 DOI: 10.1103/physreve.106.015304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
We present a thorough investigation of the particles on demand kinetic model. After a brief introduction of the method, an appropriate multiscale analysis is carried out to derive the hydrodynamic limit of the model. In this analysis, the effect of the time-space dependent comoving reference frames are taken into account. This could be regarded as a generalization of the conventional Chapman-Enskog analysis applied to the lattice Boltzmann models which feature global constant reference frames. Further simulations of target benchmarks provide numerical evidence confirming the theoretical predictions.
Collapse
Affiliation(s)
- Ehsan Reyhanian
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
4
|
Abstract
Radial basis function generated finite differences (RBF-FD) represent the latest discretization approach for solving partial differential equations. Their benefits include high geometric flexibility, simple implementation, and opportunity for large-scale parallel computing. Compared to other meshfree methods, typically based upon moving least squares (MLS), the RBF-FD method is able to recover a high order of algebraic accuracy while remaining better conditioned. These features make RBF-FD a promising candidate for kinetic-based fluid simulations such as lattice Boltzmann methods (LB). Pursuant to this approach, we propose a characteristic-based off-lattice Boltzmann method (OLBM) using the strong form of the discrete Boltzmann equation and radial basis function generated finite differences (RBF-FD) for the approximation of spatial derivatives. Decoupling the discretizations of momentum and space enables the use of irregular point cloud, local refinement, and various symmetric velocity sets with higher order isotropy. The accuracy and computational efficiency of the proposed method are studied using the test cases of Taylor–Green vortex flow, lid-driven cavity, and periodic flow over a square array of cylinders. For scattered grids, we find the polyharmonic spline + poly RBF-FD method provides better accuracy compared to MLS. For Cartesian node layouts, the results are the opposite, with MLS offering better accuracy. Altogether, our results suggest that the RBF-FD paradigm can be applied successfully also for kinetic-based fluid simulation with lattice Boltzmann methods.
Collapse
|
5
|
Guo P, Qian F, Zhang W, Yan H, Wang Q, Zhao C. Radial basis function interpolation supplemented lattice Boltzmann method for electroosmotic flows in microchannel. Electrophoresis 2021; 42:2171-2181. [PMID: 34549443 DOI: 10.1002/elps.202100155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023]
Abstract
Large gradients of physical variables near the channel walls are characteristic of EOF. The previous numerical simulations of EOFs with the lattice Boltzmann method (LBM) utilize uniform lattice and are not efficient, especially when the electric double layer (EDL) thickness is significantly smaller than the channel height. The efficient LBM simulation of EOF in microchannel calls for a nonuniform mesh which is dense in the EDL region and sparse in the bulk region. In this article, we formulate a radial basis function (RBF)-based interpolation supplemented LBM (ISLBM) to solve the governing equations of EOF, that is, the Poisson, Nernst-Planck, and Navier-Stokes equations, in a nonuniform mesh system. Unlike the conventional ISLBM, the RBF-ISLBM determines the prestreaming distribution functions by using the local RBF-based interpolation over circular supporting regions and is particularly suitable for nonuniform meshes. The RBF-ISLBM is validated by the EOFs in infinitely long and finitely long microchannels. The results show that the RBF-ISLBM possesses excellent robustness and accuracy. Finally, we use the RBF-ISLBM to simulate the EOFs with the hitherto highest electrokinetic parameter, κa, defined by the ratio of channel height a to EDL thickness κ-1 , in LBM simulations of EOF.
Collapse
Affiliation(s)
- Panpan Guo
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Fang Qian
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Wenyao Zhang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Huilong Yan
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Qiuwang Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Cunlu Zhao
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
6
|
Wilde D, Krämer A, Reith D, Foysi H. High-order semi-Lagrangian kinetic scheme for compressible turbulence. Phys Rev E 2021; 104:025301. [PMID: 34525552 DOI: 10.1103/physreve.104.025301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Turbulent compressible flows are traditionally simulated using explicit time integrators applied to discretized versions of the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely restricts the maximum time-step size. Exploiting the Lagrangian nature of the Boltzmann equation's material derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM), which circumvents this restriction. While many lattice Boltzmann methods for compressible flows were restricted to two dimensions due to the enormous number of discrete velocities in three dimensions, the SLLBM uses only 45 discrete velocities. Based on compressible Taylor-Green vortex simulations we show that the new method accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or stabilizing techniques other than the filtering introduced by the interpolation, even when the time-step sizes are up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables researchers to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time-step sizes is dictated by physics rather than spatial discretization.
Collapse
Affiliation(s)
- Dominik Wilde
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany.,Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Andreas Krämer
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Dirk Reith
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Holger Foysi
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| |
Collapse
|
7
|
Kallikounis NG, Dorschner B, Karlin IV. Multiscale semi-Lagrangian lattice Boltzmann method. Phys Rev E 2021; 103:063305. [PMID: 34271620 DOI: 10.1103/physreve.103.063305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/20/2021] [Indexed: 11/07/2022]
Abstract
We present a multi-scale lattice Boltzmann scheme, which adaptively refines particles' velocity space. Different velocity sets of lower and higher order are consistently and efficiently coupled, allowing us to use the higher-order model only when and where needed. This includes regions of high Mach or high Knudsen numbers. The coupling procedure of discrete velocity sets consists of either a projection of the higher-order populations onto the lower-order lattice or lifting of the lower-order populations to the higher-order velocity space. Both lifting and projection are local operations, which enable a flexible adaptive velocity set. The proposed scheme is formulated for both a static and an optimal, co-moving reference frame, in the spirit of the recently introduced Particles on Demand method. The multi-scale scheme is validated with an advection of an athermal vortex and in a jet flow setup. The performance of the proposed scheme is further investigated in the shock structure problem and a high-Knudsen-number Couette flow, typical examples of highly non-equilibrium flows in which the order of the velocity set plays a decisive role. The results demonstrate that the proposed multi-scale scheme can operate accurately, with flexibility in terms of the underlying models and with reduced computational requirements.
Collapse
Affiliation(s)
- N G Kallikounis
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - B Dorschner
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - I V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Saadat MH, Dorschner B, Karlin I. Extended Lattice Boltzmann Model. ENTROPY (BASEL, SWITZERLAND) 2021; 23:475. [PMID: 33920499 PMCID: PMC8073312 DOI: 10.3390/e23040475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022]
Abstract
Conventional lattice Boltzmann models for the simulation of fluid dynamics are restricted by an error in the stress tensor that is negligible only for small flow velocity and at a singular value of the temperature. To that end, we propose a unified formulation that restores Galilean invariance and the isotropy of the stress tensor by introducing an extended equilibrium. This modification extends lattice Boltzmann models to simulations with higher values of the flow velocity and can be used at temperatures that are higher than the lattice reference temperature, which enhances computational efficiency by decreasing the number of required time steps. Furthermore, the extended model also remains valid for stretched lattices, which are useful when flow gradients are predominant in one direction. The model is validated by simulations of two- and three-dimensional benchmark problems, including the double shear layer flow, the decay of homogeneous isotropic turbulence, the laminar boundary layer over a flat plate and the turbulent channel flow.
Collapse
Affiliation(s)
| | | | - Ilya Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; (M.H.S.); (B.D.)
| |
Collapse
|
9
|
Kinetic Simulations of Compressible Non-Ideal Fluids: From Supercritical Flows to Phase-Change and Exotic Behavior. COMPUTATION 2021. [DOI: 10.3390/computation9020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigate a kinetic model for compressible non-ideal fluids. The model imposes the local thermodynamic pressure through a rescaling of the particle’s velocities, which accounts for both long- and short-range effects and hence full thermodynamic consistency. The model is fully Galilean invariant and treats mass, momentum, and energy as local conservation laws. The analysis and derivation of the hydrodynamic limit is followed by the assessment of accuracy and robustness through benchmark simulations ranging from the Joule–Thompson effect to a phase-change and high-speed flows. In particular, we show the direct simulation of the inversion line of a van der Waals gas followed by simulations of phase-change such as the one-dimensional evaporation of a saturated liquid, nucleate, and film boiling and eventually, we investigate the stability of a perturbed strong shock front in two different fluid mediums. In all of the cases, we find excellent agreement with the corresponding theoretical analysis and experimental correlations. We show that our model can operate in the entire phase diagram, including super- as well as sub-critical regimes and inherently captures phase-change phenomena.
Collapse
|
10
|
Chen L, Succi S, Cai X, Schaefer L. Semi-Lagrangian implicit Bhatnagar-Gross-Krook collision model for the finite-volume discrete Boltzmann method. Phys Rev E 2020; 101:063301. [PMID: 32688570 DOI: 10.1103/physreve.101.063301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/22/2020] [Indexed: 11/07/2022]
Abstract
In order to increase the accuracy of temporal solutions, reduce the computational cost of time marching, and improve the stability associated with collisions for the finite-volume discrete Boltzmann method, an advanced implicit Bhatnagar-Gross-Krook (BGK) collision model using a semi-Lagrangian approach is proposed in this paper. Unlike existing models, in which the implicit BGK collision is resolved either by a temporal extrapolation or by a variable transformation, the proposed model removes the implicitness by tracing the particle distribution functions (PDFs) back in time along their characteristic paths during the collision process. An interpolation scheme is needed to evaluate the PDFs at the traced-back locations. By using the first-order interpolation, the resulting model allows for the straightforward replacement of f_{α}^{eq,n+1} by f_{α}^{eq,n} no matter where it appears. After comparing the proposed model with the existing models under different numerical conditions (e.g., different flux schemes and time-marching schemes) and using the proposed model to successfully modify the variable transformation technique, three conclusions can be drawn. First, the proposed model can improve the accuracy by almost an order of magnitude. Second, it can slightly reduce the computational cost. Therefore, the proposed scheme improves accuracy without extra cost. Finally, the proposed model can significantly improve the Δt/τ limit compared to the temporal interpolation model while having the same Δt/τ limit as the variable transformation approach. The proposed scheme with a second-order interpolation is also developed and tested; however, that technique displays no advantage over the simple first-order interpolation approach. Both numerical and theoretical analyses are also provided to explain why the developed implicit scheme with simple first-order interpolation can outperform the same scheme with second-order interpolation, as well as the existing temporal extrapolation and variable transformation schemes.
Collapse
Affiliation(s)
- Leitao Chen
- Department of Mechanical Engineering, Rice University, Houston, Texas 77005, USA
| | - Sauro Succi
- Center for Life Nanoscience at La Sapienza, Italian Institute of Technology, 00161, Rome, Italy
| | - Xiaofeng Cai
- Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Laura Schaefer
- Department of Mechanical Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
11
|
Hosseini SA, Darabiha N, Thévenin D. Compressibility in lattice Boltzmann on standard stencils: effects of deviation from reference temperature. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190399. [PMID: 32564724 PMCID: PMC7333953 DOI: 10.1098/rsta.2019.0399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2020] [Indexed: 05/05/2023]
Abstract
With growing interest in the simulation of compressible flows using the lattice Boltzmann (LB) method, a number of different approaches have been developed. These methods can be classified as pertaining to one of two major categories: (i) solvers relying on high-order stencils recovering the Navier-Stokes-Fourier equations, and (ii) approaches relying on classical first-neighbour stencils for the compressible Navier-Stokes equations coupled to an additional (LB-based or classical) solver for the energy balance equation. In most cases, the latter relies on a thermal Hermite expansion of the continuous equilibrium distribution function (EDF) to allow for compressibility. Even though recovering the correct equation of state at the Euler level, it has been observed that deviations of local flow temperature from the reference can result in instabilities and/or over-dissipation. The aim of the present study is to evaluate the stability domain of different EDFs, different collision models, with and without the correction terms for the third-order moments. The study is first based on a linear von Neumann analysis. The correction term for the space- and time-discretized equations is derived via a Chapman-Enskog analysis and further corroborated through spectral dispersion-dissipation curves. Finally, a number of numerical simulations are performed to illustrate the proposed theoretical study. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.
Collapse
Affiliation(s)
- S. A. Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg ‘Otto von Guericke’, 39106 Magdeburg, Germany
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192 Gif-sur-Yvette Cedex, France
- International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering, Magdeburg, Germany
| | - N. Darabiha
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192 Gif-sur-Yvette Cedex, France
| | - D. Thévenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg ‘Otto von Guericke’, 39106 Magdeburg, Germany
| |
Collapse
|
12
|
Wilde D, Krämer A, Reith D, Foysi H. Semi-Lagrangian lattice Boltzmann method for compressible flows. Phys Rev E 2020; 101:053306. [PMID: 32575305 DOI: 10.1103/physreve.101.053306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
This work thoroughly investigates a semi-Lagrangian lattice Boltzmann (SLLBM) solver for compressible flows. In contrast to other LBM for compressible flows, the vertices are organized in cells, and interpolation polynomials up to fourth order are used to attain the off-vertex distribution function values. Differing from the recently introduced Particles on Demand (PoD) method [Dorschner, Bösch, and Karlin, Phys. Rev. Lett. 121, 130602 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.130602], the method operates in a static, nonmoving reference frame. Yet the SLLBM in the present formulation grants supersonic flows and exhibits a high degree of Galilean invariance. The SLLBM solver allows for an independent time step size due to the integration along characteristics and for the use of unusual velocity sets, like the D2Q25, which is constructed by the roots of the fifth-order Hermite polynomial. The properties of the present model are shown in diverse example simulations of a two-dimensional Taylor-Green vortex, a Sod shock tube, a two-dimensional Riemann problem, and a shock-vortex interaction. It is shown that the cell-based interpolation and the use of Gauss-Lobatto-Chebyshev support points allow for spatially high-order solutions and minimize the mass loss caused by the interpolation. Transformed grids in the shock-vortex interaction show the general applicability to nonuniform grids.
Collapse
Affiliation(s)
- Dominik Wilde
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, D-57076 Siegen-Weidenau, Germany
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, D-53757 Sankt Augustin, Germany
| | - Andreas Krämer
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dirk Reith
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, D-53757 Sankt Augustin, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
| | - Holger Foysi
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, D-57076 Siegen-Weidenau, Germany
| |
Collapse
|
13
|
Saadat MH, Bösch F, Karlin IV. Semi-Lagrangian lattice Boltzmann model for compressible flows on unstructured meshes. Phys Rev E 2020; 101:023311. [PMID: 32168653 DOI: 10.1103/physreve.101.023311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/04/2020] [Indexed: 11/07/2022]
Abstract
Compressible lattice Boltzmann model on standard lattices [M. H. Saadat, F. Bösch, and I. V. Karlin, Phys. Rev. E 99, 013306 (2019).2470-004510.1103/PhysRevE.99.013306] is extended to deal with complex flows on unstructured grid. Semi-Lagrangian propagation [A. Krämer et al., Phys. Rev. E 95, 023305 (2017).2470-004510.1103/PhysRevE.95.023305] is performed on an unstructured second-order accurate finite-element mesh and a consistent wall boundary condition is implemented which makes it possible to simulate compressible flows over complex geometries. The model is validated through simulation of Sod shock tube, subsonic and supersonic flow over NACA0012 airfoil and shock-vortex interaction in Schardin's problem. Numerical results demonstrate that the present model on standard lattices is able to simulate compressible flows involving shock waves on unstructured meshes with good accuracy and without using any artificial dissipation or limiter.
Collapse
Affiliation(s)
- M H Saadat
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - F Bösch
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - I V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Yang L, Yu Y, Yang L, Hou G. Analysis and assessment of the no-slip and slip boundary conditions for the discrete unified gas kinetic scheme. Phys Rev E 2020; 101:023312. [PMID: 32168627 DOI: 10.1103/physreve.101.023312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/27/2020] [Indexed: 11/07/2022]
Abstract
The discrete unified gas kinetic scheme (DUGKS) with a force term is a finite volume solver for the Boltzmann equation. Unlike the standard lattice Boltzmann method (LBM), DUGKS can be applied on nonuniform grids. For both the LBM and DUGKS, the boundary conditions need to be processed through the density distribution function. So researchers introduced the boundary conditions from the LBM frame into the DUGKS. However, the accuracy of these boundary conditions in the DUGKS has not been studied thoroughly. Through strict theoretical deduction, we find that the bounce-back (BB) scheme leads to a different dependence of the numerical error term in the DUGKS as compared to the LBM. The error term is influenced by the relaxation time and the body force. And it can be reduced by lowering the kinetic viscosity. Unlike the BB scheme, the nonequilibrium bounce-back scheme has the ability to implement real no-slip boundary condition. Furthermore, two slip boundary conditions incorporated with Navier's slip model are introduced from the LBM framework into the DUGKS. The tangential momentum change-based (TMAC) scheme can be used directly in the DUGKS because it generates no numerical error term in the DUGKS. For the combination of the bounce-back and specular reflection schemes (BSR), the relation between the slip length and the combination parameter should be modified in accordance with the numerical error term. Analysis shows that the TMAC scheme can simulate a wider range of slip length than the BSR scheme. Numerical simulations of the Couette flow and the Poiseuille flow confirm our theoretical analysis.
Collapse
Affiliation(s)
- Liuming Yang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Yang Yu
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Liming Yang
- Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Guoxiang Hou
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
15
|
|
16
|
Krämer A, Wilde D, Küllmer K, Reith D, Foysi H. Pseudoentropic derivation of the regularized lattice Boltzmann method. Phys Rev E 2019; 100:023302. [PMID: 31574640 DOI: 10.1103/physreve.100.023302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/07/2022]
Abstract
The lattice Boltzmann method (LBM) facilitates efficient simulations of fluid turbulence based on advection and collision of local particle distribution functions. To ensure stable simulations on underresolved grids, the collision operator must prevent drastic deviations from local equilibrium. This can be achieved by various methods, such as the multirelaxation time, entropic, quasiequilibrium, regularized, and cumulant schemes. Complementing a part of a unified theoretical framework of these schemes, the present work presents a derivation of the regularized lattice Boltzmann method (RLBM), which follows a recently introduced entropic multirelaxation time LBM by Karlin, Bösch, and Chikatamarla (KBC). It is shown that both methods can be derived by locally maximizing a quadratic Taylor expansion of the entropy function. While KBC expands around the local equilibrium distribution, the RLBM is recovered by expanding entropy around a global equilibrium. Numerical tests were performed to elucidate the role of pseudoentropy maximization in these models. Simulations of a two-dimensional shear layer show that the RLBM successfully reproduces the largest eddies even on a 16×16 grid, while the conventional LBM becomes unstable for grid resolutions of 128×128 and lower. The RLBM suppresses spurious vortices more effectively than KBC. In contrast, simulations of the three-dimensional Taylor-Green and Kida vortices show that KBC performs better in resolving small scale vortices, outperforming the RLBM by a factor of 1.8 in terms of the effective Reynolds number.
Collapse
Affiliation(s)
- Andreas Krämer
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dominik Wilde
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| | - Knut Küllmer
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| | - Dirk Reith
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Holger Foysi
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| |
Collapse
|
17
|
Saadat MH, Bösch F, Karlin IV. Lattice Boltzmann model for compressible flows on standard lattices: Variable Prandtl number and adiabatic exponent. Phys Rev E 2019; 99:013306. [PMID: 30780294 DOI: 10.1103/physreve.99.013306] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 05/05/2023]
Abstract
A lattice Boltzmann model for compressible flows on standard lattices is developed and analyzed. A consistent two-population thermal lattice Boltzmann is used which allows a variable Prandtl number and a variable adiabatic exponent, and appropriate correction terms are introduced into the kinetic equations to compensate for deviations in the hydrodynamic limit. Using the concept of a shifted lattice, the model is extended to supersonic flows involving shock waves, and the shock-vortex interaction problem is simulated to show the accuracy of the proposed model. Numerical results demonstrate that the proposed model is a viable candidate for compressible flow simulations.
Collapse
Affiliation(s)
| | - Fabian Bösch
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Ilya V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
18
|
Zakirov AV, Korneev BA, Levchenko VD, Perepelkina AY. On the conservativity of the Particles-on-Demand method for solution of the Discrete Boltzmann Equation. ACTA ACUST UNITED AC 2019. [DOI: 10.20948/prepr-2019-35-e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Dorschner B, Bösch F, Karlin IV. Particles on Demand for Kinetic Theory. PHYSICAL REVIEW LETTERS 2018; 121:130602. [PMID: 30312073 DOI: 10.1103/physrevlett.121.130602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/03/2018] [Indexed: 05/22/2023]
Abstract
A novel formulation of fluid dynamics as a kinetic theory with tailored, on-demand constructed particles removes restrictions on flow speed and temperature as compared to its predecessors, the lattice Boltzmann methods and their modifications. In the new kinetic theory, discrete particles are determined by a rigorous limit process which avoids ad hoc assumptions about their velocities. Classical benchmarks for incompressible and compressible flows demonstrate that the proposed discrete-particles kinetic theory opens up an unprecedented wide domain of applications for computational fluid dynamics.
Collapse
Affiliation(s)
- B Dorschner
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - F Bösch
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - I V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|