1
|
Hurtado-Gutiérrez R, Hurtado PI, Pérez-Espigares C. Spectral signatures of symmetry-breaking dynamical phase transitions. Phys Rev E 2023; 108:014107. [PMID: 37583207 DOI: 10.1103/physreve.108.014107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/12/2023] [Indexed: 08/17/2023]
Abstract
Large deviation theory provides the framework to study the probability of rare fluctuations of time-averaged observables, opening new avenues of research in nonequilibrium physics. Some of the most appealing results within this context are dynamical phase transitions (DPTs), which might occur at the level of trajectories in order to maximize the probability of sustaining a rare event. While macroscopic fluctuation theory has underpinned much recent progress on the understanding of symmetry-breaking DPTs in driven diffusive systems, their microscopic characterization is still challenging. In this work we shed light on the general spectral mechanism giving rise to continuous DPTs not only for driven diffusive systems, but for any jump process in which a discrete Z_{n} symmetry is broken. By means of a symmetry-aided spectral analysis of the Doob-transformed dynamics, we provide the conditions whereby symmetry-breaking DPTs might emerge and how the different dynamical phases arise from the specific structure of the degenerate eigenvectors. In particular, we show explicitly how all symmetry-breaking features are encoded in the subleading eigenvectors of the degenerate subspace. Moreover, by partitioning configuration space into equivalence classes according to a proper order parameter, we achieve a substantial dimensional reduction which allows for the quantitative characterization of the spectral fingerprints of DPTs. We illustrate our predictions in several paradigmatic many-body systems, including (1) the one-dimensional boundary-driven weakly asymmetric exclusion process (WASEP), which exhibits a particle-hole symmetry-breaking DPT for current fluctuations, (2) the three- and four-state Potts model for spin dynamics, which displays discrete rotational symmetry-breaking DPTs for energy fluctuations, and (3) the closed WASEP which presents a continuous symmetry-breaking DPT into a time-crystal phase characterized by a rotating condensate.
Collapse
Affiliation(s)
- R Hurtado-Gutiérrez
- Institute Carlos I for Theoretical and Computational Physics, and Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada 18071, Spain
| | - P I Hurtado
- Institute Carlos I for Theoretical and Computational Physics, and Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada 18071, Spain
| | - C Pérez-Espigares
- Institute Carlos I for Theoretical and Computational Physics, and Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada 18071, Spain
| |
Collapse
|
2
|
Horii H, Lefevere R, Itami M, Nemoto T. Anomalous fluctuations of renewal-reward processes with heavy-tailed distributions. Phys Rev E 2022; 106:034130. [PMID: 36266861 DOI: 10.1103/physreve.106.034130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
For renewal-reward processes with a power-law decaying waiting time distribution, anomalously large probabilities are assigned to atypical values of the asymptotic processes. Previous works have revealed that this anomalous scaling causes a singularity in the corresponding large deviation function. In order to further understand this problem, we study in this article the scaling of variance in several renewal-reward processes: counting processes with two different power-law decaying waiting time distributions and a Knudsen gas (a heat conduction model). Through analytical and numerical analyses of these models, we find that the variances show an anomalous scaling when the exponent of the power law is -3. For a counting process with the power-law exponent smaller than -3, this anomalous scaling does not take place: this indicates that if we only consider the standard deviation from the expectation, any anomalous behavior will not be detected. In this case, we argue that anomalous scaling appears in higher order cumulants. Finally, many-body particles interacting through soft-core interactions with the boundary conditions employed in the Knudsen gas are studied using numerical simulations. We observe that the variance scaling becomes normal even though the power-law exponent in the boundary conditions is -3.
Collapse
Affiliation(s)
- Hiroshi Horii
- Université Paris Cité, Laboratoire de Probabilités, Statistiques et Modélisation, UMR 8001, F-75205 Paris, France
| | - Raphaël Lefevere
- Université Paris Cité, Laboratoire de Probabilités, Statistiques et Modélisation, UMR 8001, F-75205 Paris, France
| | - Masato Itami
- Center for Science Adventure and Collaborative Research Advancement, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Nemoto
- Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Hurtado-Gutiérrez R, Carollo F, Pérez-Espigares C, Hurtado PI. Building Continuous Time Crystals from Rare Events. PHYSICAL REVIEW LETTERS 2020; 125:160601. [PMID: 33124846 DOI: 10.1103/physrevlett.125.160601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Symmetry-breaking dynamical phase transitions (DPTs) abound in the fluctuations of nonequilibrium systems. Here, we show that the spectral features of a particular class of DPTs exhibit the fingerprints of the recently discovered time-crystal phase of matter. Using Doob's transform as a tool, we provide a mechanism to build classical time-crystal generators from the rare event statistics of some driven diffusive systems. An analysis of the Doob's smart field in terms of the order parameter of the transition then leads to the time-crystal lattice gas (TCLG), a model of driven fluid subject to an external packing field, which presents a clear-cut steady-state phase transition to a time-crystalline phase characterized by a matter density wave, which breaks continuous time-translation symmetry and displays rigidity and long-range spatiotemporal order, as required for a time crystal. A hydrodynamic analysis of the TCLG transition uncovers striking similarities, but also key differences, with the Kuramoto synchronization transition. Possible experimental realizations of the TCLG in colloidal fluids are also discussed.
Collapse
Affiliation(s)
- R Hurtado-Gutiérrez
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada 18071, Spain
- Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| | - F Carollo
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - C Pérez-Espigares
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada 18071, Spain
- Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| | - P I Hurtado
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada 18071, Spain
- Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| |
Collapse
|
4
|
Roldán É, Vivo P. Exact distributions of currents and frenesy for Markov bridges. Phys Rev E 2019; 100:042108. [PMID: 31770868 DOI: 10.1103/physreve.100.042108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 02/01/2023]
Abstract
We consider discrete-time Markov bridges, chains whose initial and final states coincide. We derive exact finite-time formulae for the joint probability distributions of additive functionals of trajectories. We apply our theory to time-integrated currents and frenesy of enzymatic reactions, which may include absolutely irreversible transitions. We discuss the information that frenesy carries about the currents and show that bridges may violate known uncertainty relations in certain cases. Numerical simulations are in perfect agreement with our theory.
Collapse
Affiliation(s)
- Édgar Roldán
- ICTP-The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Pierpaolo Vivo
- Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
5
|
Pérez-Espigares C, Hurtado PI. Sampling rare events across dynamical phase transitions. CHAOS (WOODBURY, N.Y.) 2019; 29:083106. [PMID: 31472495 DOI: 10.1063/1.5091669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Interacting particle systems with many degrees of freedom may undergo phase transitions to sustain atypical fluctuations of dynamical observables such as the current or the activity. In some cases, this leads to symmetry-broken space-time trajectories which enhance the probability of such events due to the emergence of ordered structures. Despite their conceptual and practical importance, these dynamical phase transitions (DPTs) at the trajectory level are difficult to characterize due to the low probability of their occurrence. However, during the last decade, advanced computational techniques have been developed to measure rare events in simulations of many-particle systems that allow the direct observation and characterization of these DPTs. Here we review the application of a particular rare-event simulation technique, based on cloning Monte Carlo methods, to characterize DPTs in paradigmatic stochastic lattice gases. In particular, we describe in detail some tricks and tips of the trade, paying special attention to the measurement of order parameters capturing the physics of the different DPTs, as well as to the finite-size effects (both in the system size and in the number of clones) that affect the measurements. Overall, we provide a consistent picture of the phenomenology associated with DPTs and their measurement.
Collapse
Affiliation(s)
- Carlos Pérez-Espigares
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| | - Pablo I Hurtado
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| |
Collapse
|
6
|
Shpielberg O. Geometrical interpretation of dynamical phase transitions in boundary-driven systems. Phys Rev E 2017; 96:062108. [PMID: 29347441 DOI: 10.1103/physreve.96.062108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Dynamical phase transitions are defined as nonanalytic points of the large deviation function of current fluctuations. We show that for boundary-driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time.
Collapse
Affiliation(s)
- Ohad Shpielberg
- Laboratoire de Physique Théorique de l'École Normale Supérieure de Paris, CNRS, ENS & PSL Research University, UPMC & Sorbonne Universités, 75005 Paris, France
| |
Collapse
|
7
|
Tizón-Escamilla N, Pérez-Espigares C, Garrido PL, Hurtado PI. Order and Symmetry Breaking in the Fluctuations of Driven Systems. PHYSICAL REVIEW LETTERS 2017; 119:090602. [PMID: 28949563 DOI: 10.1103/physrevlett.119.090602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 06/07/2023]
Abstract
Dynamical phase transitions (DPTs) in the space of trajectories are one of the most intriguing phenomena of nonequilibrium physics, but their nature in realistic high-dimensional systems remains puzzling. Here we observe for the first time a DPT in the current vector statistics of an archetypal two-dimensional (2D) driven diffusive system and characterize its properties using the macroscopic fluctuation theory. The complex interplay among the external field, anisotropy, and vector currents in 2D leads to a rich phase diagram, with different symmetry-broken fluctuation phases separated by lines of first- and second-order DPTs. Remarkably, different types of 1D order in the form of jammed density waves emerge to hinder transport for low-current fluctuations, revealing a connection between rare events and self-organized structures which enhance their probability.
Collapse
Affiliation(s)
- N Tizón-Escamilla
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| | - C Pérez-Espigares
- University of Modena and Reggio Emilia, via G. Campi 213/b, 41125 Modena, Italy
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - P L Garrido
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| | - P I Hurtado
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| |
Collapse
|
8
|
Shpielberg O, Don Y, Akkermans E. Numerical study of continuous and discontinuous dynamical phase transitions for boundary-driven systems. Phys Rev E 2017; 95:032137. [PMID: 28415355 DOI: 10.1103/physreve.95.032137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 06/07/2023]
Abstract
The existence and search for thermodynamic phase transitions is of unfading interest. In this paper, we present numerical evidence of dynamical phase transitions occurring in boundary-driven systems with a constrained integrated current. It is shown that certain models exhibit a discontinuous transition between two different density profiles and a continuous transition between a time-independent and a time-dependent profile. We also verified that the Kipnis-Marchioro-Presutti model exhibits no phase transitions in a range much larger than previously explored.
Collapse
Affiliation(s)
- Ohad Shpielberg
- Laboratoire de Physique Théorique, École Normale Supérieure and CNRS, 75005 Paris, France
- Physics Department, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Yaroslav Don
- Physics Department, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Eric Akkermans
- Physics Department, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|