1
|
Zhang L, Ma Z, Yu Y, Li B, Wu S, Liu Y, Baier G. Examining the low-voltage fast seizure-onset and its response to optogenetic stimulation in a biophysical network model of the hippocampus. Cogn Neurodyn 2024; 18:265-282. [PMID: 38406204 PMCID: PMC10881931 DOI: 10.1007/s11571-023-09935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/07/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Low-voltage fast (LVF) seizure-onset is one of the two frequently observed temporal lobe seizure-onset patterns. Depth electroencephalogram profile analysis illustrated that the peak amplitude of LVF onset was deep temporal areas, e.g., hippocampus. However, the specific dynamic transition mechanisms between normal hippocampal rhythmic activity and LVF seizure-onset remain unclear. Recently, the optogenetic approach to gain control over epileptic hyper-excitability both in vitro and in vivo has become a novel noninvasive modulation strategy. Here, we combined biophysical modeling to study LVF dynamics following changes in crucial physiological parameters, and investigated the potential optogenetic intervention mechanism for both excitatory and inhibitory control. In an Ammon's horn 3 (CA3) biophysical model with light-sensitive protein channelrhodopsin 2 (ChR2), we found that the cooperative effects of excessive extracellular potassium concentration of parvalbumin-positive (PV+) inhibitory interneurons and synaptic links could induce abundant types of discharges of the hippocampus, and lead to transitions from gamma oscillations to LVF seizure-onset. Simulations of optogenetic stimulation revealed that the LVF seizure-onset and morbid fast spiking could not be eliminated by targeting PV+ neurons, whereas the epileptic network was more sensitive to the excitatory control of principal neurons with strong optogenetic currents. We illustrate that in the epileptic hippocampal network, the trajectories of the normal and the seizure state are in close vicinity and optogenetic perturbations therefore may result in transitions. The network model system developed in this study represents a scientific instrument to disclose the underlying principles of LVF, to characterize the effects of optogenetic neuromodulation, and to guide future treatment for specific types of seizures.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Zhiyuan Ma
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Ying Yu
- School of Engineering Medicine, Beihang University, Beijing, 100191 China
| | - Bao Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Gerold Baier
- Cell and Developmental Biology, University College London, London, WC1E 6BT UK
| |
Collapse
|
2
|
Shao Y, Ostojic S. Relating local connectivity and global dynamics in recurrent excitatory-inhibitory networks. PLoS Comput Biol 2023; 19:e1010855. [PMID: 36689488 PMCID: PMC9894562 DOI: 10.1371/journal.pcbi.1010855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/02/2023] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
How the connectivity of cortical networks determines the neural dynamics and the resulting computations is one of the key questions in neuroscience. Previous works have pursued two complementary approaches to quantify the structure in connectivity. One approach starts from the perspective of biological experiments where only the local statistics of connectivity motifs between small groups of neurons are accessible. Another approach is based instead on the perspective of artificial neural networks where the global connectivity matrix is known, and in particular its low-rank structure can be used to determine the resulting low-dimensional dynamics. A direct relationship between these two approaches is however currently missing. Specifically, it remains to be clarified how local connectivity statistics and the global low-rank connectivity structure are inter-related and shape the low-dimensional activity. To bridge this gap, here we develop a method for mapping local connectivity statistics onto an approximate global low-rank structure. Our method rests on approximating the global connectivity matrix using dominant eigenvectors, which we compute using perturbation theory for random matrices. We demonstrate that multi-population networks defined from local connectivity statistics for which the central limit theorem holds can be approximated by low-rank connectivity with Gaussian-mixture statistics. We specifically apply this method to excitatory-inhibitory networks with reciprocal motifs, and show that it yields reliable predictions for both the low-dimensional dynamics, and statistics of population activity. Importantly, it analytically accounts for the activity heterogeneity of individual neurons in specific realizations of local connectivity. Altogether, our approach allows us to disentangle the effects of mean connectivity and reciprocal motifs on the global recurrent feedback, and provides an intuitive picture of how local connectivity shapes global network dynamics.
Collapse
Affiliation(s)
- Yuxiu Shao
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure—PSL Research University, Paris, France
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure—PSL Research University, Paris, France
| |
Collapse
|
3
|
The Mean Field Approach for Populations of Spiking Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:125-157. [DOI: 10.1007/978-3-030-89439-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractMean field theory is a device to analyze the collective behavior of a dynamical system comprising many interacting particles. The theory allows to reduce the behavior of the system to the properties of a handful of parameters. In neural circuits, these parameters are typically the firing rates of distinct, homogeneous subgroups of neurons. Knowledge of the firing rates under conditions of interest can reveal essential information on both the dynamics of neural circuits and the way they can subserve brain function. The goal of this chapter is to provide an elementary introduction to the mean field approach for populations of spiking neurons. We introduce the general idea in networks of binary neurons, starting from the most basic results and then generalizing to more relevant situations. This allows to derive the mean field equations in a simplified setting. We then derive the mean field equations for populations of integrate-and-fire neurons. An effort is made to derive the main equations of the theory using only elementary methods from calculus and probability theory. The chapter ends with a discussion of the assumptions of the theory and some of the consequences of violating those assumptions. This discussion includes an introduction to balanced and metastable networks and a brief catalogue of successful applications of the mean field approach to the study of neural circuits.
Collapse
|
4
|
Laing CR. Effects of degree distributions in random networks of type-I neurons. Phys Rev E 2021; 103:052305. [PMID: 34134197 DOI: 10.1103/physreve.103.052305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/07/2022]
Abstract
We consider large networks of theta neurons and use the Ott-Antonsen ansatz to derive degree-based mean-field equations governing the expected dynamics of the networks. Assuming random connectivity, we investigate the effects of varying the widths of the in- and out-degree distributions on the dynamics of excitatory or inhibitory synaptically coupled networks and gap junction coupled networks. For synaptically coupled networks, the dynamics are independent of the out-degree distribution. Broadening the in-degree distribution destroys oscillations in inhibitory networks and decreases the range of bistability in excitatory networks. For gap junction coupled neurons, broadening the degree distribution varies the values of parameters at which there is an onset of collective oscillations. Many of the results are shown to also occur in networks of more realistic neurons.
Collapse
Affiliation(s)
- Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Private Bag 102-904 NSMC, Auckland, New Zealand
| |
Collapse
|
5
|
On the structural connectivity of large-scale models of brain networks at cellular level. Sci Rep 2021; 11:4345. [PMID: 33623053 PMCID: PMC7902637 DOI: 10.1038/s41598-021-83759-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
The brain’s structural connectivity plays a fundamental role in determining how neuron networks generate, process, and transfer information within and between brain regions. The underlying mechanisms are extremely difficult to study experimentally and, in many cases, large-scale model networks are of great help. However, the implementation of these models relies on experimental findings that are often sparse and limited. Their predicting power ultimately depends on how closely a model’s connectivity represents the real system. Here we argue that the data-driven probabilistic rules, widely used to build neuronal network models, may not be appropriate to represent the dynamics of the corresponding biological system. To solve this problem, we propose to use a new mathematical framework able to use sparse and limited experimental data to quantitatively reproduce the structural connectivity of biological brain networks at cellular level.
Collapse
|
6
|
Laing CR, Bläsche C, Means S. Dynamics of Structured Networks of Winfree Oscillators. Front Syst Neurosci 2021; 15:631377. [PMID: 33643004 PMCID: PMC7902706 DOI: 10.3389/fnsys.2021.631377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 01/01/2023] Open
Abstract
Winfree oscillators are phase oscillator models of neurons, characterized by their phase response curve and pulsatile interaction function. We use the Ott/Antonsen ansatz to study large heterogeneous networks of Winfree oscillators, deriving low-dimensional differential equations which describe the evolution of the expected state of networks of oscillators. We consider the effects of correlations between an oscillator's in-degree and out-degree, and between the in- and out-degrees of an “upstream” and a “downstream” oscillator (degree assortativity). We also consider correlated heterogeneity, where some property of an oscillator is correlated with a structural property such as degree. We finally consider networks with parameter assortativity, coupling oscillators according to their intrinsic frequencies. The results show how different types of network structure influence its overall dynamics.
Collapse
Affiliation(s)
- Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Christian Bläsche
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Shawn Means
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
7
|
Laing CR, Bläsche C. The effects of within-neuron degree correlations in networks of spiking neurons. BIOLOGICAL CYBERNETICS 2020; 114:337-347. [PMID: 32124039 DOI: 10.1007/s00422-020-00822-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/15/2020] [Indexed: 05/20/2023]
Abstract
We consider the effects of correlations between the in- and out-degrees of individual neurons on the dynamics of a network of neurons. By using theta neurons, we can derive a set of coupled differential equations for the expected dynamics of neurons with the same in-degree. A Gaussian copula is used to introduce correlations between a neuron's in- and out-degree, and numerical bifurcation analysis is used determine the effects of these correlations on the network's dynamics. For excitatory coupling, we find that inducing positive correlations has a similar effect to increasing the coupling strength between neurons, while for inhibitory coupling it has the opposite effect. We also determine the propensity of various two- and three-neuron motifs to occur as correlations are varied and give a plausible explanation for the observed changes in dynamics.
Collapse
Affiliation(s)
- Carlo R Laing
- School of Natural and Computational Sciences, Massey University, NSMC, Private Bag 102-904, Auckland, New Zealand.
| | - Christian Bläsche
- School of Natural and Computational Sciences, Massey University, NSMC, Private Bag 102-904, Auckland, New Zealand
| |
Collapse
|
8
|
Vegué M, Roxin A. Firing rate distributions in spiking networks with heterogeneous connectivity. Phys Rev E 2019; 100:022208. [PMID: 31574753 DOI: 10.1103/physreve.100.022208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 11/07/2022]
Abstract
Mean-field theory for networks of spiking neurons based on the so-called diffusion approximation has been used to calculate certain measures of neuronal activity which can be compared with experimental data. This includes the distribution of firing rates across the network. However, the theory in its current form applies only to networks in which there is relatively little heterogeneity in the number of incoming and outgoing connections per neuron. Here we extend this theory to include networks with arbitrary degree distributions. Furthermore, the theory takes into account correlations in the in-degree and out-degree of neurons, which would arise, e.g., in the case of networks with hublike neurons. Finally, we show that networks with broad and positively correlated degrees can generate a large-amplitude sustained response to transient stimuli which does not occur in more homogeneous networks.
Collapse
Affiliation(s)
- Marina Vegué
- Centre de Recerca Matemàtica, Bellaterra, Spain and Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain and Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain
| | - Alex Roxin
- Centre de Recerca Matemàtica, Bellaterra, Spain and Barcelona Graduate School of Mathematics, Barcelona, Spain
| |
Collapse
|
9
|
Curto C, Morrison K. Relating network connectivity to dynamics: opportunities and challenges for theoretical neuroscience. Curr Opin Neurobiol 2019; 58:11-20. [PMID: 31319287 DOI: 10.1016/j.conb.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/22/2019] [Indexed: 11/29/2022]
Abstract
We review recent work relating network connectivity to the dynamics of neural activity. While concepts stemming from network science provide a valuable starting point, the interpretation of graph-theoretic structures and measures can be highly dependent on the dynamics associated to the network. Properties that are quite meaningful for linear dynamics, such as random walk and network flow models, may be of limited relevance in the neuroscience setting. Theoretical and computational neuroscience are playing a vital role in understanding the relationship between network connectivity and the nonlinear dynamics associated to neural networks.
Collapse
Affiliation(s)
- Carina Curto
- The Pennsylvania State University, PA 16802, United States.
| | - Katherine Morrison
- School of Mathematical Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| |
Collapse
|
10
|
On the Structure of Cortical Microcircuits Inferred from Small Sample Sizes. J Neurosci 2017; 37:8498-8510. [PMID: 28760860 DOI: 10.1523/jneurosci.0984-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/23/2017] [Accepted: 07/18/2017] [Indexed: 02/05/2023] Open
Abstract
The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering several distinct classes of network topology, including clustered networks, networks with distance-dependent connectivity, and those with broad degree distributions. To our surprise, we found that all of these qualitatively distinct topologies could account equally well for all reported nonrandom features despite being easily distinguishable from one another at the network level. This apparent paradox was a consequence of estimating network properties given only small sample sizes. In other words, networks that differ markedly in their global structure can look quite similar locally. This makes inferring network structure from small sample sizes, a necessity given the technical difficulty inherent in simultaneous intracellular recordings, problematic. We found that a network statistic called the sample degree correlation (SDC) overcomes this difficulty. The SDC depends only on parameters that can be estimated reliably given small sample sizes and is an accurate fingerprint of every topological family. We applied the SDC criterion to data from rat visual and somatosensory cortex and discovered that the connectivity was not consistent with any of these main topological classes. However, we were able to fit the experimental data with a more general network class, of which all previous topologies were special cases. The resulting network topology could be interpreted as a combination of physical spatial dependence and nonspatial, hierarchical clustering.SIGNIFICANCE STATEMENT The connectivity of cortical microcircuits exhibits features that are inconsistent with a simple random network. Here, we show that several classes of network models can account for this nonrandom structure despite qualitative differences in their global properties. This apparent paradox is a consequence of the small numbers of simultaneously recorded neurons in experiment: when inferred via small sample sizes, many networks may be indistinguishable despite being globally distinct. We develop a connectivity measure that successfully classifies networks even when estimated locally with a few neurons at a time. We show that data from rat cortex is consistent with a network in which the likelihood of a connection between neurons depends on spatial distance and on nonspatial, asymmetric clustering.
Collapse
|