1
|
Bashan R, Oppenheimer N. Hydrodynamically induced aggregation of two dimensional oriented active particles. SOFT MATTER 2024; 20:3901-3909. [PMID: 38536066 DOI: 10.1039/d3sm01670f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We investigate a system of co-oriented active particles interacting only via hydrodynamic and steric interactions in a two-dimensional fluid. We offer a new method of calculating the flow created by any active particle in such a fluid, focusing on the dynamics of flow fields with a high-order spatial decay, which we analyze using a geometric Hamiltonian. We show that when the particles are oriented and the flow has a single, odd power decay, such systems lead to stable, fractal-like aggregation, with the only exception being the force dipole. We discuss how our results can easily be generalized to more complicated force distributions and to other effective two-dimensional systems.
Collapse
Affiliation(s)
- Roee Bashan
- School of Physics and Astronomy and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| | - Naomi Oppenheimer
- School of Physics and Astronomy and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| |
Collapse
|
2
|
Hosaka Y, Andelman D, Komura S. Pair dynamics of active force dipoles in an odd-viscous fluid. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:18. [PMID: 36947274 DOI: 10.1140/epje/s10189-023-00265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
We discuss the lateral dynamics of two active force dipoles, which interact with each other via hydrodynamic interactions in a thin fluid layer that is active and chiral. The fluid layer is modeled as a two-dimensional (2D) compressible fluid with an odd viscosity, while the force dipole (representing an active protein or enzyme) induces a dipolar flow. Taking into account the momentum decay in the 2D fluid, we obtain analytically the mobility tensor that depends on the odd viscosity and includes nonreciprocal hydrodynamic interactions. We find that the particle pair shows spiral behavior due to the transverse flow induced by the odd viscosity. When the magnitude of the odd viscosity is large as compared with the shear viscosity, two types of oscillatory behaviors are seen. One of them can be understood as arising from closed orbits in dynamical systems, and its circular trajectories are determined by the ratio between the magnitude of the odd viscosity and the force dipole. In addition, the phase diagrams of the particle dipolar angles are obtained numerically. Our findings reveal that the nonreciprocal response leads to complex dynamics of active particles embedded in an active fluid with odd viscosity.
Collapse
Affiliation(s)
- Yuto Hosaka
- Max Planck Institute for Dynamics and Self-Organization (MPI DS), Am Faßberg 17, 37077, Göttingen, Germany
| | - David Andelman
- School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Shigeyuki Komura
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China.
- Oujiang Laboratory, Wenzhou, 325000, Zhejiang, China.
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| |
Collapse
|
3
|
Active Colloids on Fluid Interfaces. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Abstract
Some dividing cells sense their shape by becoming polarized along their long axis. Cell polarity is controlled in part by polarity proteins, like Rho GTPases, cycling between active membrane-bound forms and inactive cytosolic forms, modeled as a "wave-pinning" reaction-diffusion process. Does shape sensing emerge from wave pinning? We show that wave pinning senses the cell's long axis. Simulating wave pinning on a curved surface, we find that high-activity domains migrate to peaks and troughs of the surface. For smooth surfaces, a simple rule of minimizing the domain perimeter while keeping its area fixed predicts the final position of the domain and its shape. However, when we introduce roughness to our surfaces, shape sensing can be disrupted, and high-activity domains can become localized to locations other than the global peaks and valleys of the surface. On rough surfaces, the domains of the wave-pinning model are more robust in finding the peaks and troughs than the minimization rule, although both can become trapped in steady states away from the peaks and valleys. We can control the robustness of shape sensing by altering the Rho GTPase diffusivity and the domain size. We also find that the shape-sensing properties of cell polarity models can explain how domains localize to curved regions of deformed cells. Our results help to understand the factors that allow cells to sense their shape-and the limits that membrane roughness can place on this process.
Collapse
|
5
|
Hosaka Y, Komura S, Andelman D. Hydrodynamic lift of a two-dimensional liquid domain with odd viscosity. Phys Rev E 2021; 104:064613. [PMID: 35030884 DOI: 10.1103/physreve.104.064613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/12/2021] [Indexed: 11/07/2022]
Abstract
We discuss hydrodynamic forces acting on a two-dimensional liquid domain that moves laterally within a supported fluid membrane in the presence of odd viscosity. Since active rotating proteins can accumulate inside the domain, we focus on the difference in odd viscosity between the inside and outside of the domain. Taking into account the momentum leakage from a two-dimensional incompressible fluid to the underlying substrate, we analytically obtain the fluid flow induced by the lateral domain motion and calculate the drag and lift forces acting on the moving liquid domain. In contrast to the passive case without odd viscosity, the lateral lift arises in the active case only when the in and out odd viscosities are different. The in-out contrast in the odd viscosity leads to nonreciprocal hydrodynamic responses of an active liquid domain.
Collapse
Affiliation(s)
- Yuto Hosaka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.,Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - David Andelman
- School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
6
|
Abstract
The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to "cytoquakes" or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels.
Collapse
Affiliation(s)
- Daniel W Swartz
- Department of Physics and Astronomy, Johns Hopkins University, USA
- Department of Physics, Massachusetts Institute of Technology, USA
| | - Brian A Camley
- Department of Physics and Astronomy, Johns Hopkins University, USA
- Department of Biophysics, Johns Hopkins University, USA
| |
Collapse
|
7
|
Hosaka Y, Komura S, Andelman D. Nonreciprocal response of a two-dimensional fluid with odd viscosity. Phys Rev E 2021; 103:042610. [PMID: 34005895 DOI: 10.1103/physreve.103.042610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
We discuss the linear hydrodynamic response of a two-dimensional active chiral compressible fluid with odd viscosity. The viscosity coefficient represents broken time-reversal and parity symmetries in the 2D fluid and characterizes the deviation of the system from a passive fluid. Taking into account the hydrodynamic coupling to the underlying bulk fluid, we obtain the odd viscosity-dependent mobility tensor, which is responsible for the nonreciprocal hydrodynamic response to a point force. Furthermore, we consider a finite-size disk moving laterally in the 2D fluid and demonstrate that the disk experiences a nondissipative lift force in addition to the dissipative drag one.
Collapse
Affiliation(s)
- Yuto Hosaka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - David Andelman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Manikantan H. Tunable Collective Dynamics of Active Inclusions in Viscous Membranes. PHYSICAL REVIEW LETTERS 2020; 125:268101. [PMID: 33449786 DOI: 10.1103/physrevlett.125.268101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
We study hydrodynamic interactions and clustering mechanisms of active membrane inclusions within lipid bilayers. Pairs of inclusions display unique oscillatory dynamics that disappear when the 3D fluid adjacent to the membrane is confined. We reduce the governing equations to a coupled dynamical system whose phase behavior reveals the striking role of bulk confinement in enhancing cluster formation within the membrane. Using numerical simulations, we then extend this finding to demonstrate the role of confinement in controlling large-scale aggregation of membrane inclusions.
Collapse
Affiliation(s)
- Harishankar Manikantan
- Department of Chemical Engineering, University of California, Davis, California 95616, USA
| |
Collapse
|
9
|
Hosaka Y, Komura S, Mikhailov AS. Mechanochemical enzymes and protein machines as hydrodynamic force dipoles: the active dimer model. SOFT MATTER 2020; 16:10734-10749. [PMID: 33107548 DOI: 10.1039/d0sm01138j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanochemically active enzymes change their shapes within every turnover cycle. Therefore, they induce circulating flows in the solvent around them and behave as oscillating hydrodynamic force dipoles. Because of non-equilibrium fluctuating flows collectively generated by the enzymes, mixing in the solution and diffusion of passive particles within it are expected to get enhanced. Here, we investigate the intensity and statistical properties of such force dipoles in the minimal active dimer model of a mechanochemical enzyme. In the framework of this model, novel estimates for hydrodynamic collective effects in solution and in lipid bilayers under rapid rotational diffusion are derived, and available experimental and computational data is examined.
Collapse
Affiliation(s)
- Yuto Hosaka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
| | | | | |
Collapse
|
10
|
Hosaka Y, Komura S, Andelman D. Shear viscosity of two-state enzyme solutions. Phys Rev E 2020; 101:012610. [PMID: 32069562 DOI: 10.1103/physreve.101.012610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 01/17/2023]
Abstract
We discuss the shear viscosity of a Newtonian solution of catalytic enzymes and substrate molecules. The enzyme is modeled as a two-state dimer consisting of two spherical domains connected with an elastic spring. The enzymatic conformational dynamics is induced by the substrate binding and such a process is represented by an additional elastic spring. Employing the Boltzmann distribution weighted by the waiting times of enzymatic species in each catalytic cycle, we obtain the shear viscosity of dilute enzyme solutions as a function of substrate concentration and its physical properties. The substrate affinity distinguishes between fast and slow enzymes, and the corresponding viscosity expressions are obtained. Furthermore, we connect the obtained viscosity with the diffusion coefficient of a tracer particle in enzyme solutions.
Collapse
Affiliation(s)
- Yuto Hosaka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - David Andelman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
11
|
Ota Y, Hosaka Y, Yasuda K, Komura S. Three-disk microswimmer in a supported fluid membrane. Phys Rev E 2018; 97:052612. [PMID: 29906974 DOI: 10.1103/physreve.97.052612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Indexed: 06/08/2023]
Abstract
A model of three-disk micromachine swimming in a quasi-two-dimensional supported membrane is proposed. We calculate the average swimming velocity as a function of the disk size and the arm length. Due to the presence of the hydrodynamic screening length in the quasi-two-dimensional fluid, the geometric factor appearing in the average velocity exhibits three different asymptotic behaviors depending on the microswimmer size and the hydrodynamic screening length. This is in sharp contrast with a microswimmer in a three-dimensional bulk fluid that shows only a single scaling behavior. We also find that the maximum velocity is obtained when the disks are equal-sized, whereas it is minimized when the average arm lengths are identical. The intrinsic drag of the disks on the substrate does not alter the scaling behaviors of the geometric factor.
Collapse
Affiliation(s)
- Yui Ota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuto Hosaka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kento Yasuda
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|