1
|
Endo M, Tani M, Kurita R. Scraping of foam on a substrate. J Colloid Interface Sci 2023; 650:1612-1618. [PMID: 37494858 DOI: 10.1016/j.jcis.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
HYPOTHESIS Foam is not only an industrially important form of matter, but also one of soft jammed system such as colloidal suspensions and emulsion suspensions. Since foams are composed of gas bubbles and liquid, it is expected that the coupling of bubbles and liquid strongly affects rheology of foams, which is different from simple liquids. To reveal this coupling effect and considering the importance of foam applications, we studied the scraping of foam by a rigid plate on a substrate. EXPERIMENT We mainly used 5.0 wt% solution of ionic surfactant TTAB (tetradecyltrimethylammonium bromide). We systematically investigate the scraping behaviors by the rigid plate as a function of scraping velocity, gap height, confinement length, amount of foam and wettability of the substrate. FINDINGS The results show that there are three distinguishable scraping patterns: homogeneous scraping, no scraping, and slendered scraping. These behaviors are clearly different from those of simple liquid systems. Of these, the upper limit of homogeneous scraping could be explained theoretically by the competition between dewetting and shear, which is not previously discussed. Furthermore, the theory is applicable to the scraping of other soft jammed systems such as colloidal and emulsion suspensions.
Collapse
Affiliation(s)
- Masaya Endo
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Marie Tani
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo 192-0397, Japan.
| | - Rei Kurita
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo 192-0397, Japan.
| |
Collapse
|
2
|
Yanagisawa N, Kurita R. Cross over to collective rearrangements near the dry-wet transition in two-dimensional foams. Sci Rep 2023; 13:4939. [PMID: 36973314 PMCID: PMC10042865 DOI: 10.1038/s41598-023-31577-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Liquid foams respond plastically to external perturbations over some critical magnitude. This rearrangement process is directly related to the mechanical properties of the foams, playing a significant role in determining foam lifetime, deformability, elasticity, and fluidity. In this paper, we experimentally investigate the rearrangement dynamics of foams near a dry-wet transition. When a foam transforms from a dry state to a wet state, it is found that considering collective events, separated T1 events propagate in dry foams, while T1 events occur simultaneously in wet foams. This cross over to collective rearrangements is closely related to the change in local bubble arrangements and mobility. Furthermore, it is also found that a probability of collective rearrangement events occurring follows a Poisson distribution, suggesting that there is little correlation between discrete collective rearrangement events. These results constitute progress in understanding the dynamical properties of soft jammed systems, relevant for biological and material sciences as well as food science.
Collapse
Affiliation(s)
- Naoya Yanagisawa
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| | - Rei Kurita
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
3
|
Yanagisawa N, Tani M, Kurita R. Dynamics and mechanism of liquid film collapse in a foam. SOFT MATTER 2021; 17:1738-1745. [PMID: 33594403 DOI: 10.1039/d0sm02153a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Foams have unique properties that distinguish them from ordinary liquids and gases, and are ubiquitously observed in nature, both in biological systems and industrial products. Foams are known to eventually collapse over time; given their wide-range industrial application, understanding how bubbles in a foam collapse is an important aspect for product longevity and tailoring physical properties. Previously, it was shown that droplets are emitted during the collective bubble collapse, however the mechanism of the droplet emission in a foam is not yet clearly understood. It is directly related to the stability of the foam, thus we quantitatively investigate collapse dynamics in liquid films in a foam, and identify some unique features. When one film breaks, we see that the oscillation of the vertical Plateau border to which it is connected induces anomalous liquid transport from the edge of the border to the center. Once a crack appears near the border and a collapse front is formed, we find that the curvature of the front reverses as it migrates, followed by the emergence and emission of droplets. We elucidate the origins of this behavior and discuss the stability of foams, establishing how the characteristic time scales of the process relate to each other.
Collapse
Affiliation(s)
- Naoya Yanagisawa
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-Shi, Tokyo 192-0397, Japan.
| | - Marie Tani
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-Shi, Tokyo 192-0397, Japan.
| | - Rei Kurita
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-Shi, Tokyo 192-0397, Japan.
| |
Collapse
|
4
|
Yanagisawa N, Kurita R. Size distribution dependence of collective relaxation dynamics in a two-dimensional wet foam. Sci Rep 2021; 11:2786. [PMID: 33531566 PMCID: PMC7854744 DOI: 10.1038/s41598-021-82267-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/18/2021] [Indexed: 11/09/2022] Open
Abstract
Foams can be ubiquitously observed in nature and in industrial products. Despite the relevance of their properties to deformation, fluidity, and collapse, all of which are essential for applications, there are few experimental studies of collective relaxation dynamics in a wet foam. Here, we directly observe how the relaxation dynamics changes with increasing liquid fraction in both monodisperse and polydisperse two-dimensional foams. As we increase the liquid fraction, we quantitatively characterize the slowing-down of the relaxation, and the increase of the correlation length. We also find two different relaxation modes which depend on the size distribution of the bubbles. It suggests that the bubbles which are simply near to each other play an important role in large rearrangements, not just those in direct contact. Finally, we confirm the generality of our experimental findings by a numerical simulation for the relaxation process of wet foams.
Collapse
Affiliation(s)
- Naoya Yanagisawa
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| | - Rei Kurita
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
5
|
Tarábková H, Janda P. Nanobubble-Assisted Nanopatterning Reveals the Existence of Liquid Quasi-Two-Dimensional Foams Pinned to a Water-Immersed Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7200-7209. [PMID: 32501704 DOI: 10.1021/acs.langmuir.0c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper reports on our observation of a quasi-two-dimensional (quasi-2D) liquid nanofoam spontaneously appearing on a submersed solid surface. Unlike common liquid foams existing on top of the liquid, the quasi-2D liquid nanofoam is pinned to a water-immersed solid surface. The foam imaging was performed by a nanobubble imprint technique, which allows recording the positions of the surface nanobubbles by their imprints in a polystyrene film, as described in our previous papers [Tarábková et al. Langmuir 2014, 30, 14522; Tarábková et al., Langmuir 2016, 32, 11221]. Nanobubble imprints are then examined by ex situ atomic force microscopy. Besides randomly distributed nanoprotrusions corresponding to solitary nanobubbles, quasi-periodic arrangements of a tight cellular structure and more spaced round-shaped patterns, corresponding to "dry" and "wet" quasi-2D micro- and nanofoams, respectively, are identified. Although randomly spread solitary nanobubbles can occupy up to 30% of an immersed solid surface, their self-organization in a quasi-2D nanofoam leads to surface gas coverage reaching up to 80%, which implies significantly lowered surface wetting. Existence of a submersed quasi-2D nanofoam thus opens the novel question on the impact of dense surface nanobubble assemblies on heterogeneous processes at the solid-liquid interface.
Collapse
Affiliation(s)
- Hana Tarábková
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Pavel Janda
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
6
|
Ikeda A, Kawasaki T, Berthier L, Saitoh K, Hatano T. Universal Relaxation Dynamics of Sphere Packings below Jamming. PHYSICAL REVIEW LETTERS 2020; 124:058001. [PMID: 32083930 DOI: 10.1103/physrevlett.124.058001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/28/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
We show that non-Brownian suspensions of repulsive spheres below jamming display a slow relaxational dynamics with a characteristic timescale that diverges at jamming. This slow timescale is fully encoded in the structure of the unjammed packing and can be readily measured via the vibrational density of states. We show that the corresponding dynamic critical exponent is the same for randomly generated and sheared packings. Our results show that a wide variety of physical situations, from suspension rheology to algorithmic studies of the jamming transition are controlled by a unique diverging timescale, with a universal critical exponent.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Kuniyasu Saitoh
- Research Alliance Center for Mathematical Sciences & WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Takahiro Hatano
- Department of Earth and Space Science, Osaka University, 560-0043 Osaka, Japan
| |
Collapse
|
7
|
Yanagisawa N, Kurita R. In-situ observation of collective bubble collapse dynamics in a quasi-two-dimensional foam. Sci Rep 2019; 9:5152. [PMID: 30914759 PMCID: PMC6435646 DOI: 10.1038/s41598-019-41486-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/08/2019] [Indexed: 11/30/2022] Open
Abstract
The stability of foams is an important subject not only for fundamental science, but for applications in daily life. The most destructive phenomenon underpinning foam collapse is a collective bubble collapse, yet the mechanism behind this is unclear. In this study, we clarify the dynamics of the collective bubble collapse in a quasi-two-dimensional foam by in-situ observation with a high speed camera. We find two modes for collective bubble collapse: one is the propagation of liquid film breakage via impact with the stream of another broken liquid film. The other is breakage of a distant liquid film due to penetration by a liquid droplet, emitted by impact with the flow of a broken liquid film. As the liquid fraction increases, the velocity of liquid droplets decreases. Instead of penetration, the liquid droplet bounces like a billiard ball or it is absorbed into other films.
Collapse
Affiliation(s)
- Naoya Yanagisawa
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan
| | - Rei Kurita
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|