1
|
Riccardo JJ, Pasinetti PM, Ramirez-Pastor AJ, Riccardo JL. Exclusion statistics for structured particles on topologically correlated states. II. Multicomponent lattice gases. Phys Rev E 2025; 111:014123. [PMID: 39972855 DOI: 10.1103/physreve.111.014123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/20/2024] [Indexed: 02/21/2025]
Abstract
Statistical thermodynamics of particles having a spectrum of topological correlated states and observing statistical exclusion is developed to describe mixtures of species of arbitrary size and shape. A generalized statistical distribution is obtained through a configuration space ansatz recently introduced for single species accounting for the multiple exclusion statistical phenomena, where spatially correlated particle states can be simultaneously excluded by more than one particle. Statistical exclusion on a correlated states spectrum is characterized by exclusion statistical parameters β_{cij} which are self-consistently determined within the multiple exclusion from thermodynamic boundary conditions. Self-exclusion and cross-exclusion frequency functions e_{ij}(n) and average cumulative exclusion functions G_{ij}(n) are introduced to characterize the state exclusion spectrum as density varies. Haldane's statistics and Wu's distribution for statistically independent excluding species are recovered in the limit of uncorrelated states for single species as well as for mixtures of self- and cross-excluding species with constant mutual statistical exclusion. The multiple exclusion statistics formalism is applied to the k-mer problem on a square lattice rationalized as a mixture of two differently oriented self-excluding and cross-excluding pseudospecies. An isotropic-nematic and a high-density nematic-isotropic (disordered) phase transitions is predicted only for k≥7. The isotropic-nematic transition is continuum as expected, but the high-density transition results in a first-order one. The formalism provides phase coexistence lines and the chemical potential dependence of the low- and high-density branches in the nematic regime. The theoretical approach to lattice gases presented in this work offers a unique general framework applicable to mixtures of entropy-complex lattice gases. From this framework, k-mer phase transitions can be reproduced, and significant configuration features can be derived from the state exclusion spectrum functions.
Collapse
Affiliation(s)
- J J Riccardo
- Universidad Nacional de San Luis-CONICET, Departamento de Física, Instituto de Física Aplicada, Ejército de los Andes 950, D5700BWS, San Luis, Argentina
| | - P M Pasinetti
- Universidad Nacional de San Luis-CONICET, Departamento de Física, Instituto de Física Aplicada, Ejército de los Andes 950, D5700BWS, San Luis, Argentina
| | - A J Ramirez-Pastor
- Universidad Nacional de San Luis-CONICET, Departamento de Física, Instituto de Física Aplicada, Ejército de los Andes 950, D5700BWS, San Luis, Argentina
| | - J L Riccardo
- Universidad Nacional de San Luis-CONICET, Departamento de Física, Instituto de Física Aplicada, Ejército de los Andes 950, D5700BWS, San Luis, Argentina
| |
Collapse
|
2
|
Riccardo JJ, Pasinetti PM, Ramirez-Pastor AJ, Riccardo JL. Exclusion statistics for structured particles on topologically correlated states. I. Single species lattice gases. Phys Rev E 2025; 111:014122. [PMID: 39972818 DOI: 10.1103/physreve.111.014122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/13/2024] [Indexed: 02/21/2025]
Abstract
A statistical thermodynamics description of particles having a set of spatially correlated states with statistical exclusion is developed. A general approximation for the density of states is presented from a state-counting ansatz recently introduced accounting for the multiple state exclusion statistical phenomena as a consequence of state spatial correlations. The multiple exclusion statistics is characterized by an exclusion correlation constant g_{c} which is consistently determined within the formalism from proper thermodynamic limits. The analytical form of g_{c} is given in terms of the Lambert function from the particle-lattice geometry. A generalized statistical distribution is obtained reducing to Haldane's statistics and Wu's distribution in the limiting case of particles on a set of spatially uncorrelated states. The problem of hard rods (k-mers) on a square lattice is studied with this formalism. From the entropy density dependence of the isotropic (I) and fully oriented nematic (N) phases, the approximation predicts two transitions, I→N and high-coverage N→I (disordered), only for k≥7 with the entropy at saturation matching to the known value from a Monte Carlo (MC) simulation. Critical coverage of both transitions is given for k=7 to k=20 in the first and second orders of approximations, in qualitative and quantitative agreement with results from MC simulations. State exclusion frequency e(n) and exclusion average G(n) functions are introduced and given in terms of the chemical potential to obtain a thermodynamic characterization of the state exclusion evolution on density. Results of chemical potential and state exclusion are shown for ideal lattice gases of k-mers, squares, and rectangles on a square lattice. Analytical results are compared with fast-relaxation grand canonical MC simulations.
Collapse
Affiliation(s)
- J J Riccardo
- Universidad Nacional de San Luis, Departamento de Física, Instituto de Física Aplicada, -CONICET, Ejército de los Andes 950, D5700BWS San Luis, Argentina
| | - P M Pasinetti
- Universidad Nacional de San Luis, Departamento de Física, Instituto de Física Aplicada, -CONICET, Ejército de los Andes 950, D5700BWS San Luis, Argentina
| | - A J Ramirez-Pastor
- Universidad Nacional de San Luis, Departamento de Física, Instituto de Física Aplicada, -CONICET, Ejército de los Andes 950, D5700BWS San Luis, Argentina
| | - J L Riccardo
- Universidad Nacional de San Luis, Departamento de Física, Instituto de Física Aplicada, -CONICET, Ejército de los Andes 950, D5700BWS San Luis, Argentina
| |
Collapse
|
3
|
Yetkin M, Wani YM, Kritika K, Howard MP, Kappl M, Butt HJ, Nikoubashman A. Structure Formation in Supraparticles Composed of Spherical and Elongated Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1096-1108. [PMID: 38153401 DOI: 10.1021/acs.langmuir.3c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
We studied the evaporation-induced formation of supraparticles from dispersions of elongated colloidal particles using experiments and computer simulations. Aqueous droplets containing a dispersion of ellipsoidal and spherical polystyrene particles were dried on superamphiphobic surfaces at different humidity values that led to varying evaporation rates. Supraparticles made from only ellipsoidal particles showed short-range lateral ordering at the supraparticle surface and random orientations in the interior regardless of the evaporation rate. Particle-based simulations corroborated the experimental observations in the evaporation-limited regime and showed an increase in the local nematic ordering as the diffusion-limited regime was reached. A thin shell of ellipsoids was observed at the surface when supraparticles were made from binary mixtures of ellipsoids and spheres. Image analysis revealed that the supraparticle porosity increased with an increasing aspect ratio of the ellipsoids.
Collapse
Affiliation(s)
- Melis Yetkin
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yashraj M Wani
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
| | - Kritika Kritika
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden 01069, Germany
| | - Michael P Howard
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Michael Kappl
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Hans-Jürgen Butt
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
4
|
Pasinetti PM, Ramirez-Pastor AJ, Vogel EE. Entropy-driven phases at high coverage adsorption of straight rigid rods on three-dimensional cubic lattices. Phys Rev E 2023; 107:064126. [PMID: 37464669 DOI: 10.1103/physreve.107.064126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023]
Abstract
Combining Monte Carlo simulations and thermodynamic integration method, we study the configurational entropy per site of straight rigid rods of length k (k-mers) adsorbed on three-dimensional (3D) simple cubic lattices. The process is monitored by following the dependence of the lattice coverage θ on the chemical potential μ (adsorption isotherm). Then, we perform the integration of μ(θ) over θ to calculate the configurational entropy per site of the adsorbed phase s(k,θ) as a function of the coverage. Based on the behavior of the function s(k,θ), different phase diagrams are obtained according to the k values: k≤4, disordered phase; k=5,6, disordered and layered-disordered phases; and k≥7, disordered, nematic and layered-disordered phases. In the limit of θ→1 (full coverage), the configurational entropy per site is determined for values of k ranging between 2 and 8. For k≥6, MC data coincide (within the statistical uncertainty) with recent analytical predictions [D. Dhar and R. Rajesh, Phys. Rev. E 103, 042130 (2021)2470-004510.1103/PhysRevE.103.042130] for very large rods. This finding represents the first numerical validation of the expression obtained by Dhar and Rajesh for d-dimensional lattices with d>2. In addition, for k≥5, the values of s(k,θ→1) for simple cubic lattices are coincident with those values reported in [P. M. Pasinetti et al., Phys. Rev. E 104, 054136 (2021)2470-004510.1103/PhysRevE.104.054136] for two-dimensional (2D) square lattices. This is consistent with the picture that at high densities and k≥5, the layered-disordered phase is formed on the lattice. Under these conditions, the system breaks to 2D layers, and the adsorbed phase becomes essentially 2D. The 2D behavior of the fully covered lattice reinforces the conjecture that the large-k behavior of entropy per site is superuniversal, and holds on d-dimensional hypercubical lattices for all d≥2.
Collapse
Affiliation(s)
- P M Pasinetti
- Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis - CONICET, Ejército de Los Andes 950, D5700HHW San Luis, Argentina
| | - A J Ramirez-Pastor
- Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis - CONICET, Ejército de Los Andes 950, D5700HHW San Luis, Argentina
| | - E E Vogel
- Departamento de Física, Universidad de La Frontera, Casilla 54-D, Temuco 481180, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
| |
Collapse
|
5
|
Mandal D, Rakala G, Damle K, Dhar D, Rajesh R. Phases of the hard-plate lattice gas on a three-dimensional cubic lattice. Phys Rev E 2023; 107:064136. [PMID: 37464626 DOI: 10.1103/physreve.107.064136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/07/2023] [Indexed: 07/20/2023]
Abstract
We study the phase diagram of a lattice gas of 2×2×1 hard plates on the three-dimensional cubic lattice. Each plate covers an elementary plaquette of the cubic lattice, with the constraint that a site can belong to utmost one plate. We focus on the isotropic system, with equal fugacities for the three orientations of plates. We show, using grand canonical Monte Carlo simulations, that the system undergoes two phase transitions when the density of plates is increased: the first from a disordered fluid phase to a layered phase, and the second from the layered phase to a sublattice-ordered phase. In the layered phase, the system breaks up into disjoint slabs of thickness two along one spontaneously chosen Cartesian direction, corresponding to a twofold (Z_{2}) symmetry breaking of translation symmetry along the layering direction. Plates with normals perpendicular to this layering direction are preferentially contained entirely within these slabs, while plates straddling two adjacent slabs have a lower density, thus breaking the symmetry between the three types of plates. We show that the slabs exhibit two-dimensional power-law columnar order even in the presence of a nonzero density of vacancies. In contrast, interslab correlations of the two-dimensional columnar order parameter decay exponentially with the separation between the slabs. In the sublattice-ordered phase, there is twofold symmetry breaking of lattice translation symmetry along all three Cartesian directions. We present numerical evidence that the disordered to layered transition is continuous and consistent with universality class of the three-dimensional O(3) model with cubic anisotropy, while the layered to sublattice transition is first-order in nature.
Collapse
Affiliation(s)
- Dipanjan Mandal
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Geet Rakala
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken, Japan
| | - Kedar Damle
- Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | - Deepak Dhar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
6
|
Empting E, Bader N, Oettel M. Interplay of orientational order and roughness in simulated thin film growth of anisotropically interacting particles. Phys Rev E 2022; 105:045306. [PMID: 35590594 DOI: 10.1103/physreve.105.045306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Roughness and orientational order in thin films of anisotropic particles are investigated using kinetic Monte Carlo simulations on a cubic lattice. Anisotropic next-neighbor interactions between the lattice particles were chosen to mimic the effects of shape anisotropy in the interactions of disk- or rodlike molecules with van der Waals attractions. Increasing anisotropy leads first to a preferred orientation in the film (which is close to the corresponding equilibrium transition) while the qualitative mode of roughness evolution (known from isotropic systems) does not change. At strong anisotropies, an effective step-edge (Ehrlich-Schwoebel) barrier appears and a nonequilibrium roughening effect is found, accompanied by reordering in the film which can be interpreted as the nucleation and growth of domains of lying-down disks or rods. The information on order and roughness is combined into a diagram of dynamic growth modes.
Collapse
Affiliation(s)
- E Empting
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - N Bader
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - M Oettel
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Shah A, Dhar D, Rajesh R. Phase transition from nematic to high-density disordered phase in a system of hard rods on a lattice. Phys Rev E 2022; 105:034103. [PMID: 35428120 DOI: 10.1103/physreve.105.034103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
A system of hard rigid rods of length k on hypercubic lattices is known to undergo two phase transitions when chemical potential is increased: from a low density isotropic phase to an intermediate density nematic phase, and on further increase to a high-density phase with no orientational order. In this paper, we argue that, for large k, the second phase transition is a first-order transition with a discontinuity in density in all dimensions greater than 1. We show that the chemical potential at the transition is ≈kln[k/lnk] for large k, and that the density of uncovered sites drops from a value ≈(lnk)/k^{2} to a value of order exp(-ak), where a is some constant, across the transition. We conjecture that these results are asymptotically exact, in all dimensions d≥2. We also present evidence of coexistence of nematic and disordered phases from Monte Carlo simulations for rods of length 9 on the square lattice.
Collapse
Affiliation(s)
- Aagam Shah
- Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Deepak Dhar
- Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
8
|
Longone P, Martín Á, Ramirez-Pastor AJ. CO2–CH4 Exchange Process in Structure I Clathrate Hydrates: Calculations of the Thermodynamic Functions Using a Flexible 2D Lattice-Gas Model and Monte Carlo Simulations. J Phys Chem B 2022; 126:878-889. [DOI: 10.1021/acs.jpcb.1c08942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pablo Longone
- Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, CONICET, Ejército de los Andes 950, D5700HHW San Luis, Argentina
| | - Ángel Martín
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Antonio J. Ramirez-Pastor
- Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, CONICET, Ejército de los Andes 950, D5700HHW San Luis, Argentina
| |
Collapse
|
9
|
Pasinetti PM, Ramirez-Pastor AJ, Vogel EE, Saravia G. Entropy-driven phases at high coverage adsorption of straight rigid rods on two-dimensional square lattices. Phys Rev E 2021; 104:054136. [PMID: 34942833 DOI: 10.1103/physreve.104.054136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/07/2022]
Abstract
Polymers are frequently deposited on different surfaces, which has attracted the attention of scientists from different viewpoints. In the present approach polymers are represented by rigid rods of length k (k-mers), and the substrate takes the form of an L×L square lattice whose lattice constant matches exactly the interspacing between consecutive elements of the k-mer chain. We briefly review the classical description of the nematic transition presented by this system for k≥7 observing that the high-coverage (θ) transition deserves a more careful analysis from the entropy point of view. We present a possible viewpoint for this analysis that justifies the phase transitions. Moreover, we perform Monte Carlo (MC) simulations in the grand canonical ensemble, supplemented by thermodynamic integration, to first calculate the configurational entropy of the adsorbed phase as a function of the coverage, and then to explore the different phases (and orientational transitions) that appear on the surface with increasing the density of adsorbed k-mers. In the limit of θ→1 (full coverage) the configurational entropy is obtained for values of k ranging between 2 and 10. MC data are discussed in comparison with recent analytical results [D. Dhar and R. Rajesh, Phys. Rev. E 103, 042130 (2021)2470-004510.1103/PhysRevE.103.042130]. The comparative study allows us to establish the applicability range of the theoretical predictions. Finally, the structure of the high-coverage phase is characterized in terms of the statistics of k×l domains (domains of l parallel k-mers adsorbed on the surface). A distribution of finite values of l (l≪L) is found with a predominance of k×1 (single k-mers) and k×k domains. The distribution is the same in each lattice direction, confirming that at high density the adsorbed phase goes to a state with mixed orientations and no orientational preference. An order parameter measuring the number of k×k domains in the adsorbed layer is introduced.
Collapse
Affiliation(s)
- P M Pasinetti
- Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, Ejército de Los Andes 950, D5700HHW, San Luis, Argentina
| | - A J Ramirez-Pastor
- Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, Ejército de Los Andes 950, D5700HHW, San Luis, Argentina
| | - E E Vogel
- Departamento de Física, Universidad de La Frontera, Casilla 54-D, Temuco 481180, Chile and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
| | - G Saravia
- Los Eucaliptus 1189, Temuco 4812537, Chile
| |
Collapse
|
10
|
Jaleel AAA, Mandal D, Rajesh R. Hard core lattice gas with third next-nearest neighbor exclusion on triangular lattice: One or two phase transitions? J Chem Phys 2021; 155:224101. [PMID: 34911313 DOI: 10.1063/5.0066098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We obtain the phase diagram of the hard core lattice gas with third nearest neighbor exclusion on the triangular lattice using Monte Carlo simulations that are based on a rejection-free flat histogram algorithm. In a recent paper [Darjani et al., J. Chem. Phys. 151, 104702 (2019)], it was claimed that the lattice gas with third nearest neighbor exclusion undergoes two phase transitions with increasing density with the phase at intermediate densities exhibiting hexatic order with continuously varying exponents. Although a hexatic phase is expected when the exclusion range is large, it has not been seen earlier in hard core lattice gases with short range exclusion. In this paper, by numerically determining the entropies for all densities, we show that there is only a single phase transition in the system between a low-density fluid phase and a high density ordered sublattice phase and that a hexatic phase is absent. The transition is shown to be first order in nature, and the critical parameters are determined accurately.
Collapse
Affiliation(s)
- Asweel Ahmed A Jaleel
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Dipanjan Mandal
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| |
Collapse
|
11
|
Jaleel AAA, Thomas JE, Mandal D, Sumedha, Rajesh R. Rejection-free cluster Wang-Landau algorithm for hard-core lattice gases. Phys Rev E 2021; 104:045310. [PMID: 34781550 DOI: 10.1103/physreve.104.045310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 11/07/2022]
Abstract
We introduce a rejection-free, flat histogram, cluster algorithm to determine the density of states of hard-core lattice gases. We show that the algorithm is able to efficiently sample low entropy states that are usually difficult to access, even when the excluded volume per particle is large. The algorithm is based on simultaneously evaporating all the particles in a strip and reoccupying these sites with a new appropriately chosen configuration. We implement the algorithm for the particular case of the hard-core lattice gas in which the first k next-nearest neighbors of a particle are excluded from being occupied. It is shown that the algorithm is able to reproduce the known results for k=1,2,3 both on the square and cubic lattices. We also show that, in comparison, the corresponding flat histogram algorithms with either local moves or unbiased cluster moves are less accurate and do not converge as the system size increases.
Collapse
Affiliation(s)
- Asweel Ahmed A Jaleel
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Jetin E Thomas
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipanjan Mandal
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sumedha
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.,School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
12
|
Maeritz M, Oettel M. Density functional for the lattice gas from fundamental measure theory. Phys Rev E 2021; 104:024124. [PMID: 34525668 DOI: 10.1103/physreve.104.024124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
We construct a density functional for the lattice gas or Ising model on square and cubic lattices based on lattice fundamental measure theory. To treat the nearest-neighbor attractions between the lattice gas particles, the model is mapped to a multicomponent model of hard particles with additional lattice polymers where effective attractions between particles arise from the depletion effect. The lattice polymers are further treated via the introduction of polymer clusters (labelled by the numbers of polymer they contain) such that the model becomes a multicomponent model of particles and polymer clusters with nonadditive hard interactions. The density functional for this nonadditive hard model is constructed with lattice fundamental measure theory. The resulting bulk phase diagram recovers the Bethe-Peierls approximation and planar interface tensions show a considerable improvement compared to the standard mean-field functional and are close to simulation results in three dimensions. We demonstrate the existence of planar interface solutions at chemical potentials away from coexistence when the equimolar interface position is constrained to arbitrary real values.
Collapse
Affiliation(s)
- M Maeritz
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| | - M Oettel
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| |
Collapse
|
13
|
Dhar D, Rajesh R. Entropy of fully packed hard rigid rods on d-dimensional hypercubic lattices. Phys Rev E 2021; 103:042130. [PMID: 34005993 DOI: 10.1103/physreve.103.042130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/22/2021] [Indexed: 11/07/2022]
Abstract
We determine the asymptotic behavior of the entropy of full coverings of a L×M square lattice by rods of size k×1 and 1×k, in the limit of large k. We show that full coverage is possible only if at least one of L and M is a multiple of k, and that all allowed configurations can be reached from a standard configuration of all rods being parallel, using only basic flip moves that replace a k×k square of parallel horizontal rods by vertical rods, and vice versa. In the limit of large k, we show that the entropy per site S_{2}(k) tends to Ak^{-2}lnk, with A=1. We conjecture, based on a perturbative series expansion, that this large-k behavior of entropy per site is superuniversal and continues to hold on all d-dimensional hypercubic lattices, with d≥2.
Collapse
Affiliation(s)
- Deepak Dhar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
14
|
Rodrigues NT, Oliveira TJ. Husimi-lattice solutions and the coherent-anomaly-method analysis for hard-square lattice gases. Phys Rev E 2021; 103:032153. [PMID: 33862763 DOI: 10.1103/physreve.103.032153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
Although lattice gases composed of particles preventing up to their kth nearest neighbors from being occupied (the kNN models) have been widely investigated in the literature, the location and the universality class of the fluid-columnar transition in the 2NN model on the square lattice are still a topic of debate. Here, we present grand-canonical solutions of this model on Husimi lattices built with diagonal square lattices, with 2L(L+1) sites, for L⩽7. The systematic sequence of mean-field solutions confirms the existence of a continuous transition in this system, and extrapolations of the critical chemical potential μ_{2,c}(L) and particle density ρ_{2,c}(L) to L→∞ yield estimates of these quantities in close agreement with previous results for the 2NN model on the square lattice. To confirm the reliability of this approach, we employ it also for the 1NN model, where very accurate estimates for the critical parameters μ_{1,c} and ρ_{1,c}-for the fluid-solid transition in this model on the square lattice-are found from extrapolations of data for L⩽6. The nonclassical critical exponents for these transitions are investigated through the coherent anomaly method (CAM), which in the 1NN case yields β and ν differing by at most 6% from the expected Ising exponents. For the 2NN model, the CAM analysis is somewhat inconclusive, because the exponents sensibly depend on the value of μ_{2,c} used to calculate them. Notwithstanding, our results suggest that β and ν are considerably larger than the Ashkin-Teller exponents reported in numerical studies of the 2NN system.
Collapse
Affiliation(s)
- Nathann T Rodrigues
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.,Instituto de Física and National Institute of Science and Technology for Complex Systems, Universidade Federal Fluminense, 24210-346 Niterói, Rio de Janeiro, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
15
|
Rodrigues NT, Oliveira TJ. Thermodynamic behavior of binary mixtures of hard spheres: Semianalytical solutions on a Husimi lattice built with cubes. Phys Rev E 2019; 100:032112. [PMID: 31639939 DOI: 10.1103/physreve.100.032112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 11/07/2022]
Abstract
We study binary mixtures of hard particles, which exclude up to their kth nearest neighbors (kNN) on the simple cubic lattice and have activities z_{k}. In the first model analyzed, point particles (0NN) are mixed with 1NN ones. The grand-canonical solution of this model on a Husimi lattice built with cubes unveils a phase diagram with a fluid and a solid phase separated by a continuous and a discontinuous transition line which meet at a tricritical point. A density anomaly, characterized by minima in isobaric curves of the total density of particles against z_{0} (or z_{1}), is also observed in this system. Overall, this scenario is identical to the one previously found for this model when defined on the square lattice. The second model investigated consists of the mixture of 1NN particles with 2NN ones. In this case, a very rich phase behavior is found in its Husimi lattice solution, with two solid phases-one associated with the ordering of 1NN particles (S1) and the other with the ordering of 2NN ones (S2)-beyond the fluid (F) phase. While the transitions between F-S2 and S1-S2 phases are always discontinuous, the F-S1 transition is continuous (discontinuous) for small (large) z_{2}. The critical and coexistence F-S1 lines meet at a tricritical point. Moreover, the coexistence F-S1,F-S2, and S1-S2 lines meet at a triple point. Density anomalies are absent in this case.
Collapse
Affiliation(s)
- Nathann T Rodrigues
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
16
|
Rodrigues NT, Oliveira TJ. Three stable phases and thermodynamic anomaly in a binary mixture of hard particles. J Chem Phys 2019; 151:024504. [DOI: 10.1063/1.5109896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nathann T. Rodrigues
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Tiago J. Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
17
|
Quiring P, Klopotek M, Oettel M. Nematic and gas-liquid transitions for sticky rods on square and cubic lattices. Phys Rev E 2019; 100:012707. [PMID: 31499763 DOI: 10.1103/physreve.100.012707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 06/10/2023]
Abstract
Using grand-canonical Monte Carlo simulations, we investigate the phase diagram of hard rods of length L with additional contact (sticky) attractions on square and cubic lattices. The phase diagram shows a competition between gas-liquid and ordering transitions (which are of demixing type on the square lattice for L≥7 and of nematic type on the cubic lattice for L≥5). On the square lattice, increasing attractions initially lead to a stabilization of the isotropic phase. On the cubic lattice, the nematic transition remains of weak first order upon increasing the attractions. In the vicinity of the gas-liquid transition, the coexistence gap of the nematic transition quickly widens. These features are different from nematic transitions in the continuum.
Collapse
Affiliation(s)
- P Quiring
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - M Klopotek
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - M Oettel
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
18
|
Vigneshwar N, Mandal D, Damle K, Dhar D, Rajesh R. Phase diagram of a system of hard cubes on the cubic lattice. Phys Rev E 2019; 99:052129. [PMID: 31212423 DOI: 10.1103/physreve.99.052129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 06/09/2023]
Abstract
We study the phase diagram of a system of 2×2×2 hard cubes on a three-dimensional cubic lattice. Using Monte Carlo simulations, we show that the system exhibits four different phases as the density of cubes is increased: disordered, layered, sublattice ordered, and columnar ordered. In the layered phase, the system spontaneously breaks up into parallel slabs of size 2×L×L where only a very small fraction cubes do not lie wholly within a slab. Within each slab, the cubes are disordered; translation symmetry is thus broken along exactly one principal axis. In the solidlike sublattice-ordered phase, the hard cubes preferentially occupy one of eight sublattices of the cubic lattice, breaking translational symmetry along all three principal directions. In the columnar phase, the system spontaneously breaks up into weakly interacting parallel columns of size 2×2×L, where only a very small fraction cubes do not lie wholly within a column. Within each column, the system is disordered, and thus translational symmetry is broken only along two principal directions. Using finite-size scaling, we show that the disordered-layered phase transition is continuous, while the layered-sublattice and sublattice-columnar transitions are discontinuous. We construct a Landau theory written in terms of the layering and columnar order parameters which is able to describe the different phases that are observed in the simulations and the order of the transitions. Additionally, our results near the disordered-layered transition are consistent with the O(3) universality class perturbed by cubic anisotropy as predicted by the Landau theory.
Collapse
Affiliation(s)
- N Vigneshwar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipanjan Mandal
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Kedar Damle
- Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Deepak Dhar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
19
|
Mandal D, Nath T, Rajesh R. Phase transitions in a system of hard Y-shaped particles on the triangular lattice. Phys Rev E 2018; 97:032131. [PMID: 29776058 DOI: 10.1103/physreve.97.032131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 06/08/2023]
Abstract
We study the different phases and the phase transitions in a system of Y-shaped particles, examples of which include immunoglobulin-G and trinaphthylene molecules, on a triangular lattice interacting exclusively through excluded volume interactions. Each particle consists of a central site and three of its six nearest neighbors chosen alternately, such that there are two types of particles which are mirror images of each other. We study the equilibrium properties of the system using grand canonical Monte Carlo simulations that implement an algorithm with cluster moves that is able to equilibrate the system at densities close to full packing. We show that, with increasing density, the system undergoes two entropy-driven phase transitions with two broken-symmetry phases. At low densities, the system is in a disordered phase. As intermediate phases, there is a solidlike sublattice phase in which one type of particle is preferred over the other and the particles preferentially occupy one of four sublattices, thus breaking both particle symmetry as well as translational invariance. At even higher densities, the phase is a columnar phase, where the particle symmetry is restored, and the particles preferentially occupy even or odd rows along one of the three directions. This phase has translational order in only one direction, and breaks rotational invariance. From finite-size scaling, we demonstrate that both the transitions are first order in nature. We also show that the simpler system with only one type of particle undergoes a single discontinuous phase transition from a disordered phase to a solidlike sublattice phase with an increasing density of particles.
Collapse
Affiliation(s)
- Dipanjan Mandal
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Trisha Nath
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
20
|
Patra S, Das D, Rajesh R, Mitra MK. Diffusion dynamics and steady states of systems of hard rods on a square lattice. Phys Rev E 2018; 97:022108. [PMID: 29548151 DOI: 10.1103/physreve.97.022108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 06/08/2023]
Abstract
It is known from grand canonical simulations of a system of hard rods on two-dimensional lattices that an orientationally ordered nematic phase exists only when the length of the rods is at least seven. However, a recent microcanonical simulation with diffusion kinetics, conserving both total density and zero nematic order, reported the existence of a nematically phase-segregated steady state with interfaces in the diagonal direction for rods of length six [Phys. Rev. E 95, 052130 (2017)2470-004510.1103/PhysRevE.95.052130], violating the equivalence of different ensembles for systems in equilibrium. We resolve this inconsistency by demonstrating that the kinetics violate detailed balance condition and drives the system to a nonequilibrium steady state. By implementing diffusion kinetics that drive the system to equilibrium, even within this constrained ensemble, we recover earlier results showing phase segregation only for rods of length greater than or equal to seven. Furthermore, in contrast to the nonequilibrium steady state, the interface has no preferred orientational direction. In addition, by implementing different nonequilibrium kinetics, we show that the interface between the phase segregated states can lie in different directions depending on the choice of kinetics.
Collapse
Affiliation(s)
- Saugata Patra
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai-400076, India
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai-400076, India
| | - R Rajesh
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai-600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
21
|
Mortazavifar M, Oettel M. Phase diagrams for sticky rods in bulk and in a monolayer from a lattice free-energy functional for anisotropic particles with depletion attractions. Phys Rev E 2017; 96:032608. [PMID: 29347030 DOI: 10.1103/physreve.96.032608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 06/07/2023]
Abstract
A density functional of fundamental measure type for a lattice model of anisotropic particles with hard-core repulsions and effective attractions is derived in the spirit of the Asakura-Oosawa model. Through polymeric lattice particles of various size and shape, effective attractions of different strength and range between the colloids can be generated. The functional is applied to the determination of phase diagrams for sticky rods of length L in two dimensions, in three dimensions, and in a monolayer system on a neutral substrate. In all cases, there is a competition between ordering and gas-liquid transitions. In two dimensions, this gives rise to a tricritical point, whereas in three dimensions, the isotropic-nematic transition crosses over smoothly to a gas-nematic liquid transition. The richest phase behavior is found for the monolayer system. For L=2, two stable critical points are found corresponding to a standard gas-liquid transition and a nematic liquid-liquid transition. For L=3, the gas-liquid transition becomes metastable.
Collapse
Affiliation(s)
- M Mortazavifar
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| | - M Oettel
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| |
Collapse
|
22
|
Mandal D, Rajesh R. Columnar-disorder phase boundary in a mixture of hard squares and dimers. Phys Rev E 2017; 96:012140. [PMID: 29347141 DOI: 10.1103/physreve.96.012140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 06/07/2023]
Abstract
A mixture of hard squares, dimers, and vacancies on a square lattice is known to undergo a transition from a low-density disordered phase to a high-density columnar ordered phase. Along the fully packed square-dimer line, the system undergoes a Kosterliz-Thouless-type transition to a phase with power law correlations. We estimate the phase boundary separating the ordered and disordered phases by calculating the interfacial tension between two differently ordered phases within two different approximation schemes. The analytically obtained phase boundary is in good agreement with Monte Carlo simulations.
Collapse
Affiliation(s)
- Dipanjan Mandal
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|