1
|
Iashina EG, Varfolomeeva EY, Pantina RA, Bairamukov VY, Kovalev RA, Fedorova ND, Pipich V, Radulescu A, Grigoriev SV. Bifractal structure of chromatin in rat lymphocyte nuclei. Phys Rev E 2021; 104:064409. [PMID: 35030913 DOI: 10.1103/physreve.104.064409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/29/2021] [Indexed: 11/07/2022]
Abstract
The small-angle neutron scattering (SANS) on the rat lymphocyte nuclei demonstrates the bifractal nature of the chromatin structural organization. The scattering intensity from rat lymphocyte nuclei is described by power law Q^{-D} with fractal dimension approximately 2.3 on smaller scales and 3 on larger scales. The crossover between two fractal structures is detected at momentum transfer near 10^{-1}nm^{-1}. The use of contrast variation (D_{2}O-H_{2}O) in SANS measurements reveals clear similarity in the structural organizations of nucleic acids (NA) and proteins. Both chromatin components show bifractal behavior with logarithmic fractal structure on the large scale and volume fractal with slightly smaller than 2.5 structure on the small scale. Scattering intensities from chromatin, protein component, and NA component demonstrate an extremely extensive range of logarithmic fractal behavior (from 10^{-3} to approximately 10^{-1}nm^{-1}). We compare the fractal arrangement of rat lymphocyte nuclei with that of chicken erythrocytes and the immortal HeLa cell line. We conclude that the bifractal nature of the chromatin arrangement is inherent in the nuclei of all these cells. The details of the fractal arrangement-its range and correlation/interaction between nuclear acids and proteins are specific for different cells and is related to their functionality.
Collapse
Affiliation(s)
- E G Iashina
- Petersburg Nuclear Physics Institute (PNPI), NRC Kurchatov Institute, Orlova roshcha 1, 188300, Gatchina, Russia.,Saint-Petersburg State University (SPSU), Ulyanovskaya str. 1, 198504, Saint-Petersburg, Russia
| | - E Yu Varfolomeeva
- Petersburg Nuclear Physics Institute (PNPI), NRC Kurchatov Institute, Orlova roshcha 1, 188300, Gatchina, Russia
| | - R A Pantina
- Petersburg Nuclear Physics Institute (PNPI), NRC Kurchatov Institute, Orlova roshcha 1, 188300, Gatchina, Russia
| | - V Yu Bairamukov
- Petersburg Nuclear Physics Institute (PNPI), NRC Kurchatov Institute, Orlova roshcha 1, 188300, Gatchina, Russia
| | - R A Kovalev
- Petersburg Nuclear Physics Institute (PNPI), NRC Kurchatov Institute, Orlova roshcha 1, 188300, Gatchina, Russia
| | - N D Fedorova
- Petersburg Nuclear Physics Institute (PNPI), NRC Kurchatov Institute, Orlova roshcha 1, 188300, Gatchina, Russia
| | - V Pipich
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - A Radulescu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - S V Grigoriev
- Petersburg Nuclear Physics Institute (PNPI), NRC Kurchatov Institute, Orlova roshcha 1, 188300, Gatchina, Russia.,Saint-Petersburg State University (SPSU), Ulyanovskaya str. 1, 198504, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Grigoriev SV, Iashina EG, Wu B, Pipich V, Lang C, Radulescu A, Bairamukov VY, Filatov MV, Pantina RA, Varfolomeeva EY. Observation of nucleic acid and protein correlation in chromatin of HeLa nuclei using small-angle neutron scattering with D_{2}O-H_{2}O contrast variation. Phys Rev E 2021; 104:044404. [PMID: 34781557 DOI: 10.1103/physreve.104.044404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023]
Abstract
The small-angle neutron scattering (SANS) on HeLa nuclei demonstrates the bifractal nature of the chromatin structural organization. The border line between two fractal structures is detected as a crossover point at Q_{c}≈4×10^{-2}nm^{-1} in the momentum transfer dependence Q^{-D}. The use of contrast variation (D_{2}O-H_{2}O) in SANS measurements reveals clear similarity in the large scale structural organizations of nucleic acids (NA) and proteins. Both NA and protein structures have a mass fractal arrangement with the fractal dimension of D≈2.5 at scales smaller than 150 nm down to 20 nm. Both NA and proteins show a logarithmic fractal behavior with D≈3 at scales larger than 150 nm up to 6000 nm. The combined analysis of the SANS and atomic force microscopy data allows one to conclude that chromatin and its constitutes (DNA and proteins) are characterized as soft, densely packed, logarithmic fractals on the large scale and as rigid, loosely packed, mass fractals on the smaller scale. The comparison of the partial cross sections from NA and proteins with one from chromatin as a whole demonstrates spatial correlation of two chromatin's components in the range up to 900 nm. Thus chromatin in HeLa nuclei is built as the unified structure of the NA and proteins entwined through each other. Correlation between two components is lost upon scale increases toward 6000 nm. The structural features at the large scale, probably, provide nuclei with the flexibility and chromatin-free space to build supercorrelations on the distance of 10^{3} nm resembling cycle cell activity, such as an appearance of nucleoli and a DNA replication.
Collapse
Affiliation(s)
- S V Grigoriev
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC Kurchatov Institute, Gatchina, St-Petersburg 188300, Russia.,Saint-Petersburg State University, Ulyanovskaya 1, Saint-Petersburg 198504, Russia
| | - E G Iashina
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC Kurchatov Institute, Gatchina, St-Petersburg 188300, Russia.,Saint-Petersburg State University, Ulyanovskaya 1, Saint-Petersburg 198504, Russia
| | - B Wu
- Forschungszentrum Juelich, JCNS-4 at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - V Pipich
- Forschungszentrum Juelich, JCNS-4 at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Ch Lang
- Forschungszentrum Juelich, JCNS-4 at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - A Radulescu
- Forschungszentrum Juelich, JCNS-4 at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - V Yu Bairamukov
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC Kurchatov Institute, Gatchina, St-Petersburg 188300, Russia
| | - M V Filatov
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC Kurchatov Institute, Gatchina, St-Petersburg 188300, Russia
| | - R A Pantina
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC Kurchatov Institute, Gatchina, St-Petersburg 188300, Russia
| | - E Yu Varfolomeeva
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC Kurchatov Institute, Gatchina, St-Petersburg 188300, Russia
| |
Collapse
|
3
|
Abstract
Abstract
The program of developing the instrument base of reactor complex PIK is reviewed. This program is carried out in correspondence with the Decree of the President of the Russian Federation No. 356 on July 25, 2019 and the Federal Scientific and Technical Program for the Development of Synchrotron and Neutron Research and Research Infrastructure on the 2019–2027s. The general concept and plans of formation of the instrument base are reported in the four-volume manuscript PIK Reactor Complex (editors V.L. Aksenov and M.V. Kovalchuk), published in 2015.
Collapse
|
4
|
Grigoriev SV, Iashina EG, Bairamukov VY, Pipich V, Radulescu A, Filatov MV, Pantina RA, Varfolomeeva EY. Switch of fractal properties of DNA in chicken erythrocytes nuclei by mechanical stress. Phys Rev E 2020; 102:032415. [PMID: 33075965 DOI: 10.1103/physreve.102.032415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/13/2020] [Indexed: 11/07/2022]
Abstract
The small-angle neutron scattering (SANS) on the chicken erythrocyte nuclei demonstrates the bifractal nature of the chromatin structural organization. Use of the contrast variation (D_{2}O-H_{2}O) in SANS measurements reveals the differences in the DNA and protein arrangements inside the chromatin substance. It is the DNA that serves as a framework that constitutes the bifractal behavior showing the mass fractal properties with D=2.22 at a smaller scale and the logarithmic fractal behavior with D≈3 at a larger scale. The protein spatial organization shows the mass fractal properties with D≈2.34 throughout the whole nucleus. The borderline between two fractal levels can be significantly shifted toward smaller scales by centrifugation of the nuclei disposed on the dry substrate, since nuclei suffer from mechanical stress transforming them to a disklike shape. The height of this disk measured by atomic force microscopy (AFM) coincides closely with the fractal borderline, thus characterizing two types of the chromatin with the soft (at larger scale) and rigid (at smaller scale) properties. The combined SANS and AFM measurements demonstrate the stress induced switch of the DNA fractal properties from the rigid, but loosely packed, mass fractal to the soft, but densely packed, logarithmic fractal.
Collapse
Affiliation(s)
- S V Grigoriev
- Petersburg Nuclear Physics Institute, Gatchina, St-Petersburg, 188300, Russia.,Saint-Petersburg State University, Ulyanovskaya 1, Saint-Petersburg, 198504, Russia
| | - E G Iashina
- Petersburg Nuclear Physics Institute, Gatchina, St-Petersburg, 188300, Russia
| | - V Yu Bairamukov
- Petersburg Nuclear Physics Institute, Gatchina, St-Petersburg, 188300, Russia
| | - V Pipich
- Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85748 Garching bei München, Germany
| | - A Radulescu
- Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85748 Garching bei München, Germany
| | - M V Filatov
- Petersburg Nuclear Physics Institute, Gatchina, St-Petersburg, 188300, Russia
| | - R A Pantina
- Petersburg Nuclear Physics Institute, Gatchina, St-Petersburg, 188300, Russia
| | - E Yu Varfolomeeva
- Petersburg Nuclear Physics Institute, Gatchina, St-Petersburg, 188300, Russia
| |
Collapse
|
5
|
Bendandi A, Dante S, Zia SR, Diaspro A, Rocchia W. Chromatin Compaction Multiscale Modeling: A Complex Synergy Between Theory, Simulation, and Experiment. Front Mol Biosci 2020; 7:15. [PMID: 32158765 PMCID: PMC7051991 DOI: 10.3389/fmolb.2020.00015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022] Open
Abstract
Understanding the mechanisms that trigger chromatin compaction, its patterns, and the factors they depend on, is a fundamental and still open question in Biology. Chromatin compacts and reinforces DNA and is a stable but dynamic structure, to make DNA accessible to proteins. In recent years, computational advances have provided larger amounts of data and have made large-scale simulations more viable. Experimental techniques for the extraction and reconstitution of chromatin fibers have improved, reinvigorating theoretical and experimental interest in the topic and stimulating debate on points previously considered as certainties regarding chromatin. A great assortment of approaches has emerged, from all-atom single-nucleosome or oligonucleosome simulations to various degrees of coarse graining, to polymer models, to fractal-like structures and purely topological models. Different fiber-start patterns have been studied in theory and experiment, as well as different linker DNA lengths. DNA is a highly charged macromolecule, making ionic and electrostatic interactions extremely important for chromatin topology and dynamics. Indeed, the repercussions of varying ionic concentration have been extensively examined at the computational level, using all-atom, coarse-grained, and continuum techniques. The presence of high-curvature AT-rich segments in DNA can cause conformational variations, attesting to the fact that the role of DNA is both structural and electrostatic. There have been some tentative attempts to describe the force fields governing chromatin conformational changes and the energy landscapes of these transitions, but the intricacy of the system has hampered reaching a consensus. The study of chromatin conformations is an intrinsically multiscale topic, influenced by a wide range of biological and physical interactions, spanning from the atomic to the chromosome level. Therefore, powerful modeling techniques and carefully planned experiments are required for an overview of the most relevant phenomena and interactions. The topic provides fertile ground for interdisciplinary studies featuring a synergy between theoretical and experimental scientists from different fields and the cross-validation of respective results, with a multi-scale perspective. Here, we summarize some of the most representative approaches, and focus on the importance of electrostatics and solvation, often overlooked aspects of chromatin modeling.
Collapse
Affiliation(s)
- Artemi Bendandi
- Physics Department, University of Genoa, Genoa, Italy
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Silvia Dante
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Syeda Rehana Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Alberto Diaspro
- Physics Department, University of Genoa, Genoa, Italy
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Walter Rocchia
- Concept Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
6
|
Iashina EG, Filatov MV, Pantina RA, Varfolomeeva EY, Bouwman WG, Duif CP, Honecker D, Pipich V, Grigoriev SV. Small-angle neutron scattering (SANS) and spin-echo SANS measurements reveal the logarithmic fractal structure of the large-scale chromatin organization in HeLa nuclei. J Appl Crystallogr 2019. [DOI: 10.1107/s160057671900921x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This paper reports on the two-scale fractal structure of chromatin organization in the nucleus of the HeLa cell. Two neutron scattering methods, small-angle neutron scattering (SANS) and spin-echo SANS, are used to unambiguously identify the large-scale structure as being a logarithmic fractal with the correlation function γ(r) ∼ ln(r/ξ). The smaller-scale structural level is shown to be a volume fractal with dimension D
F = 2.41. By definition, the volume fractal is self-similar at different scales, while the logarithmic fractal is hierarchically changed upon scaling. As a result, the logarithmic fractal is more compact than the volume fractal but still has a rather high surface area, which provides accessibility at all length scales. Apparently such bi-fractal chromatin organization is the result of an evolutionary process of optimizing the compactness and accessibility of gene packing. As they are in a water solution, the HeLa nuclei tend to agglomerate over time. The large-scale logarithmic fractal structure of chromatin provides the HeLa nucleus with the possibility of penetrating deeply into the adjacent nucleus during the agglomeration process. The interpenetration phenomenon of the HeLa nuclei shows that the chromatin-free space of one nucleus is not negligible but is as large as the volume occupied by chromatin itself. It is speculated that it is the logarithmic fractal architecture of chromatin that provides a comfortable compartment for this most important function of the cell.
Collapse
|