1
|
Zhou T, Zhang L, Zhang P, Shi AC, Jiang K. Nucleation and phase transition of decagonal quasicrystals. J Chem Phys 2024; 161:164503. [PMID: 39440759 DOI: 10.1063/5.0232334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
In this work, we study the nucleation of quasicrystals from liquid or periodic crystals by developing an efficient order-order phase transition algorithm, namely, the nullspace-preserving saddle search method. In particular, we focus on nucleation and phase transitions of the decagonal quasicrystal (DQC) based on the Lifshitz-Petrich model. We present the nucleation path of DQC from the liquid and demonstrate one- and two-stage transition paths between DQC and periodic crystals. We provide a perspective of the group-subgroup phase transition and nucleation rates to understand the nucleation and phase transition mechanisms involving DQC. These results reveal the one-step and multi-step modes of symmetry breaking or recovery in the phase transition from DQC, where the multi-step modes are more probable.
Collapse
Affiliation(s)
- Tiejun Zhou
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
| | - Pingwen Zhang
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
- School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Kai Jiang
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
2
|
Formation of a single quasicrystal upon collision of multiple grains. Nat Commun 2021; 12:5790. [PMID: 34635644 PMCID: PMC8505427 DOI: 10.1038/s41467-021-26070-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
Quasicrystals exhibit long-range order but lack translational symmetry. When grown as single crystals, they possess distinctive and unusual properties owing to the absence of grain boundaries. Unfortunately, conventional methods such as bulk crystal growth or thin film deposition only allow us to synthesize either polycrystalline quasicrystals or quasicrystals that are at most a few centimeters in size. Here, we reveal through real-time and 3D imaging the formation of a single decagonal quasicrystal arising from a hard collision between multiple growing quasicrystals in an Al-Co-Ni liquid. Through corresponding molecular dynamics simulations, we examine the underlying kinetics of quasicrystal coalescence and investigate the effects of initial misorientation between the growing quasicrystalline grains on the formation of grain boundaries. At small misorientation, coalescence occurs following rigid rotation that is facilitated by phasons. Our joint experimental-computational discovery paves the way toward fabrication of single, large-scale quasicrystals for novel applications.
Collapse
|
3
|
Tang S, Wang Z, Wang J, Jiang K, Liang C, Ma Y, Liu W, Du Y. An atomic scale study of two-dimensional quasicrystal nucleation controlled by multiple length scale interactions. SOFT MATTER 2020; 16:5718-5726. [PMID: 32525172 DOI: 10.1039/c9sm02243k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Formation of quasicrystal structures has always been mysterious since the discovery of these magic structures. In this work, the nucleation of decagonal, dodecagonal, heptagonal, and octagonal quasicrystal structures controlled by the coupling among multiple length scales is investigated using a dynamic phase-field crystal model. We observe that the nucleation of quasicrystals proceeds through local rearrangement of length scales, i.e., the generation, merging and stacking of 3-atom building blocks constructed by the length scales, and accordingly, propose a geometric model to describe the cooperation of length scales during structural transformation in quasicrystal nucleation. Essentially, such cooperation is crucial to quasicrystal formation, and controlled by the match and balance between length scales. These findings clarify the scenario and microscopic mechanism of the structural evolution during quasicrystal nucleation, and help us to understand the common rule for the formation of periodic crystal and quasicrystal structures with various symmetries.
Collapse
Affiliation(s)
- Sai Tang
- National Key Laboratory of Science and Technology for National Defence on High-Strength Materials, Central South University, China.
| | - Zhijun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Youyi Western Road 127, 710072, Xi'an, China
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Youyi Western Road 127, 710072, Xi'an, China
| | - Kai Jiang
- School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chaoping Liang
- National Key Laboratory of Science and Technology for National Defence on High-Strength Materials, Central South University, China.
| | - Yunzhu Ma
- National Key Laboratory of Science and Technology for National Defence on High-Strength Materials, Central South University, China.
| | - Wensheng Liu
- National Key Laboratory of Science and Technology for National Defence on High-Strength Materials, Central South University, China.
| | - Yong Du
- State Key Lab for Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
4
|
Martinsons M, Hielscher J, Kapfer SC, Schmiedeberg M. Event-chain Monte Carlo simulations of the liquid to solid transition of two-dimensional decagonal colloidal quasicrystals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:475103. [PMID: 31342938 DOI: 10.1088/1361-648x/ab3519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In event-chain Monte Carlo simulations, we model colloidal particles in two dimensions that interact according to an isotropic short-ranged pair potential which supports the two typical length scales present in decagonal quasicrystals. We investigate the assembled structures as we vary the density and temperature. Our special interest is related to the transition from quasicrystal to liquid. In contrast to the KTHNY melting theory for quasicrystals which predicts an intermediate pentahedratic phase, we find a one-step first-order melting transition. However, we discover that the slow relaxation of phasonic flips, i.e. rearrangements of the particles due to additional degrees of freedom in quasicrystals, changes the positional correlation functions, to the extent that structures with long-range orientational correlations, but exponentially decaying positional correlations, are observed.
Collapse
|
5
|
Ratliff DJ, Archer AJ, Subramanian P, Rucklidge AM. Which Wave Numbers Determine the Thermodynamic Stability of Soft Matter Quasicrystals? PHYSICAL REVIEW LETTERS 2019; 123:148004. [PMID: 31702194 DOI: 10.1103/physrevlett.123.148004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 06/10/2023]
Abstract
For soft matter to form quasicrystals an important ingredient is to have two characteristic length scales in the interparticle interactions. To be more precise, for stable quasicrystals, periodic modulations of the local density distribution with two particular wave numbers should be favored, and the ratio of these wave numbers should be close to certain special values. So, for simple models, the answer to the title question is that only these two ingredients are needed. However, for more realistic models, where in principle all wave numbers can be involved, other wave numbers are also important, specifically those of the second and higher reciprocal lattice vectors. We identify features in the particle pair interaction potentials that can suppress or encourage density modes with wave numbers associated with one of the regular crystalline orderings that compete with quasicrystals, enabling either the enhancement or suppression of quasicrystals in a generic class of systems.
Collapse
Affiliation(s)
- D J Ratliff
- Department of Mathematical Sciences and Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - A J Archer
- Department of Mathematical Sciences and Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - P Subramanian
- School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - A M Rucklidge
- School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
6
|
Ajlouni R. A seed-based structural model for constructing rhombic quasilattice with 7-fold symmetry. Struct Chem 2018. [DOI: 10.1007/s11224-018-1169-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Gemeinhardt A, Martinsons M, Schmiedeberg M. Growth of two-dimensional dodecagonal colloidal quasicrystals: Particles with isotropic pair interactions with two length scales vs. patchy colloids with preferred binding angles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:126. [PMID: 30338492 DOI: 10.1140/epje/i2018-11737-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
We explore the growth of colloidal quasicrystals with dodecagonal symmetry in two dimensions by employing Brownian dynamics simulations. On the one hand, we study the growth behavior of structures obtained in a system of particles that interact according to an isotropic pair potential with two typical length scales. On the other hand, we consider patchy colloids that possess only one typical interaction length scale but prefer given binding angles. In case of the isotropic particles, we show that an imbalance in the competition between the two distances might lead to defects with wrong nearest-neighbor distances in the resulting structure. In contrast, during the growth of quasicrystals with patchy colloids such defects do not occur due to the lack of a second interaction length scale. However, as a downside, the diffusion of patchy particles along a surface typically is slower such that domains occur where the particles possess different phononic and phasonic offsets. Our results are important to understand how soft matter quasicrystals can be grown as perfectly as possible and to obtain a deeper insight into the mechanisms of the growth of quasicrystals in general.
Collapse
Affiliation(s)
- Anja Gemeinhardt
- Institut für Theoretische Physik I, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 7, 91058, Erlangen, Germany
| | - Miriam Martinsons
- Institut für Theoretische Physik I, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 7, 91058, Erlangen, Germany.
| | - Michael Schmiedeberg
- Institut für Theoretische Physik I, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 7, 91058, Erlangen, Germany
| |
Collapse
|
8
|
Martinsons M, Schmiedeberg M. Growth of two-dimensional decagonal colloidal quasicrystals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:255403. [PMID: 29762124 DOI: 10.1088/1361-648x/aac503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The growth of quasicrystals, i.e. structures with long-range positional order but no periodic translational symmetry, is more complex than the growth of periodic crystals. By employing Brownian dynamics simulations in two dimensions for colloidal particles that interact according to an isotropic pair potential with two incommensurate lengths, we study the growth of quasicrystalline structures by sequentially depositing particles at their surface. We quantify the occurrence of quasicrystalline order as a function of the temperature and the rate of added particles. In addition, we explore defects like local triangular order or gaps within the quasicrystalline structure. Furthermore, we analyze the shapes of the surfaces in grown structures which tend to build straight lines along the symmetry axes of the quasicrystal. Finally, we identify phasonic flips which are rearrangements of the particles due to additional degrees of freedom. The number of phasonic flips decreases with the distance to the surface.
Collapse
Affiliation(s)
- M Martinsons
- Institut für Theoretische Physik I, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
| | | |
Collapse
|