1
|
Dey P, Thakur A, Chotalia A, Nandi A, Parmananda P. Run-and-tumble like motion of a camphor-infused Marangoni swimmer. SOFT MATTER 2025; 21:2291-2299. [PMID: 40007310 DOI: 10.1039/d4sm01363h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
'Run-and-tumble' (RT) motion has been a subject of intense research for several decades. Many organisms, such as bacteria, perform such motion in the presence or absence of local chemical concentration gradients and it is found to be advantageous in search processes. Although there are previous reports involving the successful design of non-living self-propelled particles exhibiting such motion in the presence of external stimuli (chemical/mechanical), RT motion with 'rest' has not yet been observed for autonomous non-living active particles. We have designed a swimmer that performs motion using a combination of 'run', 'tumble', and 'rest' states with stochastic transitions. In the present scenario, it arises solely due to self-generated local surface tension gradients. We quantify the residence time statistics by analyzing the swimmer trajectories from the experimental data, which suggests that the 'rest' and 'tumble' states are more frequent than 'run'. Then, we quantify the motion properties by computing the mean squared displacement, which shows that the swimmer performs ballistic motion on a short time scale and then slows down due to tumbling and resting. To validate the observed transport properties, we introduce a minimal model of a chiral active Brownian particle, stochastically switching between three internal states. The model parameters were extracted from the experiments, which rendered a good agreement between the experiments and simulations.
Collapse
Affiliation(s)
- Pampa Dey
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India.
| | - Abhishek Thakur
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India.
| | - Aarsh Chotalia
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India.
| | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India.
| | - P Parmananda
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India.
| |
Collapse
|
2
|
Kitahata H, Koyano Y. Mathematical modeling for the synchronization of two interacting active rotors. Phys Rev E 2023; 107:064607. [PMID: 37464628 DOI: 10.1103/physreve.107.064607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023]
Abstract
We investigate the synchronization of active rotors. A rotor is composed of a free-rotating arm with a particle that releases a surface-active chemical compound. It exhibits self-rotation due to the surface tension gradient originating from the concentration field of the surface-active compound released from the rotor. In a system with two active rotors, they should interact through the concentration field. Thus, the interaction between them does not depend only on the instantaneous positions, but also on the dynamics of the concentration field. By numerical simulations, we show that in-phase and antiphase synchronizations occur depending on the distance between the two rotors. The stability of the synchronization mode is analyzed based on phase reduction theorem through the calculation of the concentration field in the co-rotating frame with the active rotor. We also confirm that the numerical results meet the prediction by theoretical analyses.
Collapse
Affiliation(s)
- Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Yuki Koyano
- Department of Human Environmental Science, Graduate School of Human Development and Environment, Kobe University, Kobe 657-0011, Japan
| |
Collapse
|
3
|
Löffler RJG, Roliński T, Kitahata H, Koyano Y, Górecki J. New types of complex motion of a simple camphor boat. Phys Chem Chem Phys 2023; 25:7794-7804. [PMID: 36857664 DOI: 10.1039/d2cp05707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
We discuss the motion of a rectangular camphor boat, considering the position of a camphor pill in relation to the boat's stern as the control parameter. The boat moves because the pill releases surface active molecules that decrease the surface tension and support the motion. We introduce a new experimental system in which the boat rotates on a long arm around the axis located at the centre of a Petri dish; thus, the motion is restricted to a circle and can be studied under stationary conditions for a long time. The experiments confirmed two previously reported modes of motion: continuous motion when the pill was located at the boat edge and pulsating (intermittent) motion if it was close to the boat centre (Suematsu et al., J. Phys. Chem. C, 2010, 114(21), 9876-9882). For intermediate pill locations, we observed a new, unreported type of motion characterised by oscillating speed (i.e. oscillating motion). Different modes of motion can be observed for the same pill location. The experimental results are qualitatively confirmed using a simple reaction-diffusion model of the boat evolution used in the above-mentioned paper.
Collapse
Affiliation(s)
- Richard J G Löffler
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland. .,Division of Astrophysics, Lund Observatory, Lund University, Box 43, SE-221 00 Lund, Sweden
| | - Tomasz Roliński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Yuki Koyano
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan
| | - Jerzy Górecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
4
|
Wu H, Chen Y, Xu W, Xin C, Wu T, Feng W, Yu H, Chen C, Jiang S, Zhang Y, Wang X, Duan M, Zhang C, Liu S, Wang D, Hu Y, Li J, Li E, Wu H, Chu J, Wu D. High-performance Marangoni hydrogel rotors with asymmetric porosity and drag reduction profile. Nat Commun 2023; 14:20. [PMID: 36596764 PMCID: PMC9810638 DOI: 10.1038/s41467-022-35186-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/21/2022] [Indexed: 01/04/2023] Open
Abstract
Miniaturized rotors based on Marangoni effect have attracted great attentions due to their promising applications in propulsion and power generation. Despite intensive studies, the development of Marangoni rotors with high rotation output and fuel economy remains challenging. To address this challenge, we introduce an asymmetric porosity strategy to fabricate Marangoni rotor composed of thermoresponsive hydrogel and low surface tension anesthetic metabolite. Combining enhanced Marangoni propulsion of asymmetric porosity with drag reduction of well-designed profile, our rotor precedes previous studies in rotation output (~15 times) and fuel economy (~34% higher). Utilizing thermoresponsive hydrogel, the rotor realizes rapid refueling within 33 s. Moreover, iron-powder dopant further imparts the rotors with individual-specific locomotion in group under magnetic stimuli. Significantly, diverse functionalities including kinetic energy transmission, mini-generator and environmental remediation are demonstrated, which open new perspectives for designing miniaturized rotating machineries and inspire researchers in robotics, energy, and environment.
Collapse
Affiliation(s)
- Hao Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Yiyu Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China.,Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenlong Xu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Xin
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Tao Wu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Feng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Hao Yu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Shaojun Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Yachao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaojie Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Minghui Duan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Cong Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Shunli Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Dawei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Erqiang Li
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - HengAn Wu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
5
|
Ishikawa H, Koyano Y, Kitahata H, Sumino Y. Pairing-induced motion of source and inert particles driven by surface tension. Phys Rev E 2022; 106:024604. [PMID: 36109978 DOI: 10.1103/physreve.106.024604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
We experimentally and theoretically investigate systems with a pair of source and inert particles that interact through a concentration field. The experimental system comprises a camphor disk as the source particle and a metal washer as the inert particle. Both are floated on an aqueous solution of glycerol at various concentrations, where the glycerol modifies the viscosity of the aqueous phase. The particles form a pair owing to the attractive lateral capillary force. As the camphor disk spreads surface-active molecules at the aqueous surface, the camphor disk and metal washer move together, driven by the surface tension gradient. The washer is situated in the front of the camphor disk, keeping the distance constant during their motion, which we call a pairing-induced motion. The pairing-induced motion exhibited a transition between circular and straight motions as the glycerol concentration in the aqueous phase changed. Numerical calculations using a model that considers forces caused by the surface tension gradient and lateral capillary interaction reproduced the observed transition in the pairing-induced motion. Moreover, this transition agrees with the result of the linear stability analysis on the reduced dynamical system obtained by the expansion with respect to the particle velocity. Our results reveal that the effect of the particle velocity cannot be overlooked to describe the interaction through the concentration field.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Physics, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuki Koyano
- Department of Physics, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yutaka Sumino
- Department of Applied Physics, Faculty of Science Division I, Tokyo University of Science, 6-3-1 Nijuku, Katsushika-ku, Tokyo 125-8585, Japan
- WaTUS and DCIS, Research Institute for Science & Technology, Tokyo University of Science, 6-3-1 Nijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
6
|
Tiwari I, Upadhye S, Akella VS, Parmananda P. Revealing the deterministic components in active avalanche-like dynamics. SOFT MATTER 2021; 17:2865-2871. [PMID: 33586749 DOI: 10.1039/d0sm01999b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Avalanche dynamics in an ensemble of self-propelled camphor boats are studied. The self-propelled agents are camphor infused circular paper disks moving on the surface of water. The ensemble exhibits bursts of activity in the autonomous state triggered by stochastic fluctuations. This type of dynamics has been previously reported in a slightly different system (J. Phys. Soc. Jpn., 2015, 84, 034802). Fourier analysis of the autonomous ensemble's average speed reveals a unimodal spectrum, indicating the presence of a preferred time scale in the dynamics. We therefor, entrain such an ensemble by external forcing by using periodic air perturbations on the surface of the water. This forcing is able to replace the stochastic fluctuations which trigger a burst in the autonomous ensemble, thus entraining the system. Upon varying the periodic forcing frequency, an optimal frequency is revealed at which the quality of entrainment of the ensemble by the forcing is augmented. This optimal frequency is found to be in the vicinity of the Fourier spectrum peak of the autonomous ensemble's average speed. This indicates the existence of an underlying deterministic component in the apparent aperiodic bursts of motion of the autonomous ensemble of active particles. A qualitative reasoning for the observed phenomenon is presented.
Collapse
Affiliation(s)
- Ishant Tiwari
- Department of Physics, Indian Institute of Technology-Bombay, Mumbai, Maharashtra-400076, India.
| | - Swanith Upadhye
- Department of Physics, Indian Institute of Technology-Bombay, Mumbai, Maharashtra-400076, India.
| | - V S Akella
- Department of Physics, Indian Institute of Technology, Jammu, Jagti Campus, Jammu & Kashmir, 181221, India.
| | - P Parmananda
- Department of Physics, Indian Institute of Technology-Bombay, Mumbai, Maharashtra-400076, India.
| |
Collapse
|
7
|
Ender H, Froin AK, Rehage H, Kierfeld J. Surfactant-loaded capsules as Marangoni microswimmers at the air-water interface: Symmetry breaking and spontaneous propulsion by surfactant diffusion and advection. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:21. [PMID: 33686547 PMCID: PMC7940327 DOI: 10.1140/epje/s10189-021-00035-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/08/2021] [Indexed: 05/21/2023]
Abstract
We present a realization of a fast interfacial Marangoni microswimmer by a half-spherical alginate capsule at the air-water interface, which diffusively releases water-soluble spreading molecules (weak surfactants such as polyethylene glycol (PEG)), which act as "fuel" by modulating the air-water interfacial tension. For a number of different fuels, we can observe symmetry breaking and spontaneous propulsion although the alginate particle and emission are isotropic. The propulsion mechanism is similar to soap or camphor boats, which are, however, typically asymmetric in shape or emission to select a swimming direction. We develop a theory of Marangoni boat propulsion starting from low Reynolds numbers by analyzing the coupled problems of surfactant diffusion and advection and fluid flow, which includes surfactant-induced fluid Marangoni flow, and surfactant adsorption at the air-water interface; we also include a possible evaporation of surfactant. The swimming velocity is determined by the balance of drag and Marangoni forces. We show that spontaneous symmetry breaking resulting in propulsion is possible above a critical dimensionless surfactant emission rate (Peclet number). We derive the relation between Peclet number and swimming speed and generalize to higher Reynolds numbers utilizing the concept of the Nusselt number. The theory explains the observed swimming speeds for PEG-alginate capsules, and we unravel the differences to other Marangoni boat systems based on camphor, which are mainly caused by surfactant evaporation from the liquid-air interface. The capsule Marangoni microswimmers also exhibit surfactant-mediated repulsive interactions with walls, which can be qualitatively explained by surfactant accumulation at the wall.
Collapse
Affiliation(s)
- Hendrik Ender
- Department of Physics, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Ann-Kathrin Froin
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Heinz Rehage
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Jan Kierfeld
- Department of Physics, Technische Universität Dortmund, 44221, Dortmund, Germany.
| |
Collapse
|
8
|
Koyano Y, Kitahata H. Imperfect bifurcation in the rotation of a propeller-shaped camphor rotor. Phys Rev E 2021; 103:012202. [PMID: 33601587 DOI: 10.1103/physreve.103.012202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023]
Abstract
We investigated the bifurcation structure on the self-propelled motion of a camphor rotor at a water surface. The center of the camphor rotor was fixed by the axis, and it showed rotational motion around it. Due to the chiral asymmetry of its shape, the absolute values of the angular velocities in clockwise and counterclockwise directions were different. This asymmetry in the angular velocities implies an imperfect bifurcation. From the numerical simulation results, we discuss the condition for the occurrence of the imperfect bifurcation.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
9
|
Sharma J, Tiwari I, Das D, Parmananda P. Chimeralike states in a minimal network of active camphor ribbons. Phys Rev E 2021; 103:012214. [PMID: 33601538 DOI: 10.1103/physreve.103.012214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
A chimeralike state is the spatiotemporal pattern in an ensemble of homogeneous coupled oscillators, described as the emergence of coexisting coherent (synchronized) and incoherent (unsynchronized) groups. We demonstrate the existence of these states in three active camphor ribbons, which are camphor infused rectangular pieces of paper. These pinned ribbons rotate on the surface of the water due to Marangoni effect driven forces generated by the surface tension gradients. The ribbons are coupled via a camphor layer on the surface of the water. In the minimal network of globally coupled camphor ribbons, chimeralike states are characterized by the coexistence of two synchronized and one unsynchronized ribbons. We present a numerical model, simulating the coupling between ribbons as repulsive Yukawa interactions, which was able to reproduce these experimentally observed states.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Physics, Indian Institute of Technology - Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Ishant Tiwari
- Department of Physics, Indian Institute of Technology - Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology - Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - P Parmananda
- Department of Physics, Indian Institute of Technology - Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
10
|
Tiwari I, Parmananda P, Chelakkot R. Periodic oscillations in a string of camphor infused disks. SOFT MATTER 2020; 16:10334-10344. [PMID: 33237113 DOI: 10.1039/d0sm01393e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rhythmic beating motion of autonomously motile filaments has many practical applications. Here, we present an experimental study on a filament made of camphor infused paper disks, stitched together adjacent to each other using nylon thread. The filament displays spontaneous translatory motion when it is placed on the surface of water due to the surface tension gradients created by camphor molecules on the water surface. When this filament is clamped on one end, we obtain regular oscillatory motion instead of translation. The filament shows qualitatively different dynamics at different activity levels, which is controlled by the amount of camphor infused into the paper disks. For a better physical understanding of the filament dynamics, we develop a minimal numerical model involving a semi-flexible filament made of active polar disks, where the polarity is coupled to the instantaneous velocity of the particle. This model qualitatively reproduces different oscillatory modes of the filament. Moreover, our model reveals a rich dynamical state diagram of the system, as a function of filament activity and the coupling strength.
Collapse
Affiliation(s)
- Ishant Tiwari
- Department of Physics, Indian Institute of Technology - Bombay, Mumbai, Maharashtra 400076, India.
| | | | | |
Collapse
|
11
|
Biswas A, Cruz JM, Parmananda P, Das D. First passage of an active particle in the presence of passive crowders. SOFT MATTER 2020; 16:6138-6144. [PMID: 32555827 DOI: 10.1039/d0sm00350f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We experimentally study the stochastic transport of a self-propelled camphor boat, driven by Marangoni forces, through a crowd of passive paper discs floating on water. We analyze the statistics of the first passage times of the active particle to travel from the center of a circular container to its boundary. While the mean times rise monotonically as a function of the covered area fraction φ of the passive paper discs, their fluctuations show a non-monotonic behavior - being higher at low and high value of φ compared to intermediate values. The reason is traced to an interplay of two distinct sources of fluctuations - one intrinsic to the dynamics, while the other due to the crowding.
Collapse
Affiliation(s)
- Animesh Biswas
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - J M Cruz
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - P Parmananda
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - Dibyendu Das
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| |
Collapse
|
12
|
Sharma J, Tiwari I, Das D, Parmananda P, Pimienta V. Rotational synchronization of camphor ribbons in different geometries. Phys Rev E 2020; 101:052202. [PMID: 32575261 DOI: 10.1103/physreve.101.052202] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
We present experiments on multiple pinned self-propelled camphor ribbons, which is a rectangular piece of paper with camphor infused in its matrix. Experiments were performed on three, four, and five ribbons placed in linear and polygonal geometries. The pinned ribbons rotate on the surface of water, due to the surface tension gradient introduced by the camphor layer in the neighborhood of the ribbon. This camphor layer leads to a chemical coupling between the ribbons. In different geometries, the ribbons have been observed to rotationally synchronize in all the possible configurations. A numerical model, emulating the interactions between the ribbons as Yukawa interaction was studied, which was qualitatively able to reproduce the experimental findings.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Ishant Tiwari
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - P Parmananda
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Véronique Pimienta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, Toulouse Cedex 9, France
| |
Collapse
|
13
|
Koyano Y, Kitahata H, Nakata S, Gorecki J. On a simple model that explains inversion of a self-propelled rotor under periodic stop-and-release-operations. CHAOS (WOODBURY, N.Y.) 2020; 30:023105. [PMID: 32113248 DOI: 10.1063/1.5140626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
We propose a simple mathematical model that describes the time evolution of a self-propelled object on a liquid surface using variables such as object location, surface concentration of active molecules, and hydrodynamic surface flow. The model is applied to simulate the time evolution of a rotor composed of a polygonal plate with camphor pills at its corners. We have qualitatively reproduced results of experiments, in which the inversion of rotational direction under periodic stop-and-release-operations was investigated. The model correctly describes the probability of the inversion as a function of the duration of the phase when the rotor is stopped. Moreover, the model allows to introduce the rotor asymmetry unavoidable in real experiments and study its influence on the studied phenomenon. Our numerical simulations have revealed that the probability of the inversion of rotational direction is determined by the competition among the transport of the camphor molecules by the flow, the intrinsic asymmetry of the rotor, and the noise amplitude.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Jerzy Gorecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Löffler RJG, Hanczyc MM, Gorecki J. A hybrid camphor-camphene wax material for studies on self-propelled motion. Phys Chem Chem Phys 2019; 21:24852-24856. [PMID: 31702747 DOI: 10.1039/c9cp04722k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new material that combines the self-propelling properties of camphor with the malleability of camphene is reported. It has wax-like mechanical properties at room temperature and can be formed into required shapes. The speed of the self-propelled objects and the trajectory depend on the shape and camphor-camphene weight ratio.
Collapse
Affiliation(s)
- Richard J G Löffler
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, 38123 Povo, TN, Italy and Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Jerzy Gorecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
15
|
Koyano Y, Suematsu NJ, Kitahata H. Rotational motion of a camphor disk in a circular region. Phys Rev E 2019; 99:022211. [PMID: 30934219 DOI: 10.1103/physreve.99.022211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 12/15/2022]
Abstract
In a two-dimensional axisymmetric system, the system symmetry allows rotational or oscillatory motion as stable stationary motion for a symmetric self-propelled particle. In the present paper, we studied the motion of a camphor disk confined in a two-dimensional circular region. By reducing the mathematical model describing the dynamics of the motion of a camphor disk and the concentration field of camphor molecules on a water surface, we analyzed the reduced equations around a bifurcation point where the rest state at the center of the system becomes unstable. As a result, we found that rotational motion is stably realized through the double-Hopf bifurcation from the rest state. The theoretical results were confirmed by numerical calculation and corresponded well to the experimental results.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Nobuhiko J Suematsu
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan.,Meiji Institute of Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
16
|
Morohashi H, Imai M, Toyota T. Construction of a chemical motor-movable frame assembly based on camphor grains using water-floating 3D-printed models. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Sharma J, Tiwari I, Das D, Parmananda P, Akella VS, Pimienta V. Rotational synchronization of camphor ribbons. Phys Rev E 2019; 99:012204. [PMID: 30780363 DOI: 10.1103/physreve.99.012204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 06/09/2023]
Abstract
Experiments on interacting pinned self-propelled rotators are presented. The rotators are made from paper with camphor infused in its matrix. The ribbons rotate due to Marangoni effect driven forces arising by virtue of surface tension gradients. Two such self-rotating camphor ribbons are observed to experience a repulsive coupling via the camphor layer in the common water medium. Lag synchronization in both corotating (same sense of rotation) and counterrotating (opposite sense of rotation) ribbons is reported for the experiments. This synchronization is found to be dependent on the pivot to pivot distance l. For distances less than the span of both the ribbons, l_{c}, the rotators successfully synchronize. Furthermore, it is experimentally perceived that synchronization in the counterrotating ribbons is more robust than in the corotating ribbons. We rationalize the mechanism of this synchronization via a theoretical model involving a Yukawa type interaction which is analyzed numerically.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | - Ishant Tiwari
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | - P Parmananda
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | - V S Akella
- Department of Applied Mechanics, Indian Institute of Technology, Madras, Adyar, Chennai, Tamil Nadu 600036, India
| | - Véronique Pimienta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne 31062, Toulouse Cedex 9, France
| |
Collapse
|
18
|
Koyano Y, Kitahata H, Gryciuk M, Akulich N, Gorecka A, Malecki M, Gorecki J. Bifurcation in the angular velocity of a circular disk propelled by symmetrically distributed camphor pills. CHAOS (WOODBURY, N.Y.) 2019; 29:013125. [PMID: 30709118 DOI: 10.1063/1.5061027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
We studied rotation of a disk propelled by a number of camphor pills symmetrically distributed at its edge. The disk was put on a water surface so that it could rotate around a vertical axis located at the disk center. In such a system, the driving torque originates from surface tension difference resulting from inhomogeneous surface concentration of camphor molecules released from the pills. Here, we investigated the dependence of the stationary angular velocity on the disk radius and on the number of pills. The work extends our previous study on a linear rotor propelled by two camphor pills [Y. Koyano et al., Phys. Rev. E 96, 012609 (2017)]. It was observed that the angular velocity dropped to zero after a critical number of pills was exceeded. Such behavior was confirmed by a numerical model of time evolution of the rotor. The model predicts that, for a fixed friction coefficient, the speed of pills can be accurately represented by a function of the linear number density of pills. We also present bifurcation analysis of the conditions at which the transition between a standing and a rotating disk appears.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Chiba University, Chiba 263-8522, Japan
| | | | - Marian Gryciuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Nadejda Akulich
- Department of Chemistry, Technology of Electrochemical Production and Electronic Engineering Materials, Belarusian State Technological University, Minsk 220006, Belarus
| | - Agnieszka Gorecka
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Maciej Malecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Jerzy Gorecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| |
Collapse
|
19
|
Kitahata H, Yoshinaga N. Effective diffusion coefficient including the Marangoni effect. J Chem Phys 2018; 148:134906. [DOI: 10.1063/1.5021502] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Natsuhiko Yoshinaga
- WPI-AIMR, Tohoku University, Sendai, Miyagi 980-8577, Japan
- MathAM-OIL, AIST, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|