1
|
Chen J, Lei X, Xiang Y, Duan M, Peng X, Zhang HP. Emergent Chirality and Hyperuniformity in an Active Mixture with Nonreciprocal Interactions. PHYSICAL REVIEW LETTERS 2024; 132:118301. [PMID: 38563944 DOI: 10.1103/physrevlett.132.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
We investigate collective dynamics in a binary mixture of programmable robots in experiments and simulations. While robots of the same species align their motion direction, interaction between species is distinctly nonreciprocal: species A aligns with B and species B antialigns with A. This nonreciprocal interaction gives rise to the emergence of collective chiral motion that can be stabilized by limiting the robot angular speed to be below a threshold. Within the chiral phase, increasing the robot density or extending the range of local repulsive interactions can drive the system through an absorbing-active transition. At the transition point, the robots exhibit a remarkable capacity for self-organization, forming disordered hyperuniform states.
Collapse
Affiliation(s)
- Jianchao Chen
- School of Physics and Astronomy, Institute of Natural Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaokang Lei
- Faculty of Electronic and Information Engineering, and MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, 710049, China
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yalun Xiang
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mengyuan Duan
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xingguang Peng
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - H P Zhang
- School of Physics and Astronomy, Institute of Natural Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Duan Y, Agudo-Canalejo J, Golestanian R, Mahault B. Dynamical Pattern Formation without Self-Attraction in Quorum-Sensing Active Matter: The Interplay between Nonreciprocity and Motility. PHYSICAL REVIEW LETTERS 2023; 131:148301. [PMID: 37862639 DOI: 10.1103/physrevlett.131.148301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/22/2023]
Abstract
We study a minimal model involving two species of particles interacting via quorum-sensing rules. Combining simulations of the microscopic model and linear stability analysis of the associated coarse-grained field theory, we identify a mechanism for dynamical pattern formation that does not rely on the standard route of intraspecies effective attractive interactions. Instead, our results reveal a highly dynamical phase of chasing bands induced only by the combined effects of self-propulsion and nonreciprocity in the interspecies couplings. Turning on self-attraction, we find that the system may phase separate into a macroscopic domain of such chaotic chasing bands coexisting with a dilute gas. We show that the chaotic dynamics of bands at the interfaces of this phase-separated phase results in anomalously slow coarsening.
Collapse
Affiliation(s)
- Yu Duan
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| |
Collapse
|
3
|
Gupta RK, Kant R, Soni H, Sood AK, Ramaswamy S. Active nonreciprocal attraction between motile particles in an elastic medium. Phys Rev E 2022; 105:064602. [PMID: 35854487 DOI: 10.1103/physreve.105.064602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
We show from experiments and simulations on vibration-activated granular matter that self-propelled polar rods in an elastic medium on a substrate turn and move towards each other. We account for this effective attraction through a coarse-grained theory of a motile particle as a moving point-force density that creates elastic strains in the medium that reorient other particles. Our measurements confirm qualitatively the predicted features of the distortions created by the rods, including the |x|^{-1/2} tail of the trailing displacement field and nonreciprocal sensing and pursuit. A discrepancy between the magnitudes of displacements along and transverse to the direction of motion remains. Our theory should be of relevance to the interaction of motile cells in the extracellular matrix or in a supported layer of gel or tissue.
Collapse
Affiliation(s)
- Rahul Kumar Gupta
- Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500 107, India
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
- Institut für Theoretische Physik II - Soft Matter Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Raushan Kant
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - Harsh Soni
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - Sriram Ramaswamy
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
4
|
Codina J, Mahault B, Chaté H, Dobnikar J, Pagonabarraga I, Shi XQ. Small Obstacle in a Large Polar Flock. PHYSICAL REVIEW LETTERS 2022; 128:218001. [PMID: 35687474 DOI: 10.1103/physrevlett.128.218001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
We show that arbitrarily large polar flocks are susceptible to the presence of a single small obstacle. In a wide region of parameter space, the obstacle triggers counterpropagating dense bands leading to reversals of the flow. In very large systems, these bands interact, yielding a never-ending chaotic dynamics that constitutes a new disordered phase of the system. While most of these results were obtained using simulations of aligning self-propelled particles, we find similar phenomena at the continuous level, not when considering the basic Toner-Tu hydrodynamic theory, but in simulations of truncations of the relevant Boltzmann equation.
Collapse
Affiliation(s)
- Joan Codina
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
- Sorbonne Université, CNRS UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Jure Dobnikar
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, 08028 Barcelona, Spain
- Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
5
|
Poncet A, Bartolo D. When Soft Crystals Defy Newton's Third Law: Nonreciprocal Mechanics and Dislocation Motility. PHYSICAL REVIEW LETTERS 2022; 128:048002. [PMID: 35148143 DOI: 10.1103/physrevlett.128.048002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/07/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The effective interactions between the constituents of driven soft matter generically defy Newton's third law. Combining theory and numerical simulations, we establish that six classes of mechanics with no counterparts in equilibrium systems emerge in elastic crystals challenged by nonreciprocal interactions. Going beyond linear deformations, we reveal that interactions violating Newton's third law generically turn otherwise quiescent dislocations into motile singularities which steadily glide though periodic lattices.
Collapse
Affiliation(s)
- Alexis Poncet
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Denis Bartolo
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
6
|
JIRARI IMANEEL, BAROUDI ADILEL, AMMAR AMINE. EFFECT OF ARTERIOLAR DISTENSIBILITY ON THE LATERAL MIGRATION OF LIQUID-FILLED MICROPARTICLES FLOWING IN A HUMAN ARTERIOLE. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A promising advance of bioengineering consists in the development of micro-nanoparticles as drug delivery vehicles injected intravenously or intraarterialy for targeted treatment. Proficient functioning of drug carries is conditioned by a reliable prediction of pharmacokinetics in human as well as their dynamical behavior once injected in blood stream. In this study, we aim to provide a reliable numerical prediction of dynamical behavior of microparticles in human arteriole focusing on the crucial mechanism of lateral migration. The dynamical response of the microparticle upon blood flow and arteriolar distensibility is investigated by varying main controlling parameters: viscosity ratio, confinement and capillary number. The influence of the hyperelastic arteriolar wall is highlighted through comparison with an infinitely rigid arteriolar wall. The hydrodynamic interaction in a microparticle train is examined. Fluid–structure interaction is solved by the Arbitrary Lagrangian–Eulerian method using the COMSOL Multiphysics software.
Collapse
Affiliation(s)
- IMANE EL JIRARI
- LAMPA, Arts et Metiers Institute of Technology, 49035 Angers, France
| | - ADIL EL BAROUDI
- LAMPA, Arts et Metiers Institute of Technology, 49035 Angers, France
| | - AMINE AMMAR
- LAMPA, Arts et Metiers Institute of Technology, 49035 Angers, France
| |
Collapse
|
7
|
A Review on the Some Issues of Multiphase Flow with Self-Driven Particles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiphase flow with self-driven particles is ubiquitous and complex. Exploring the flow properties has both important academic meaning and engineering value. This review emphasizes some recent studies on multiphase flow with self-driven particles: the hydrodynamic interactions between self-propelled/self-rotary particles and passive particles; the aggregation, phase separation and sedimentation of squirmers; the influence of rheological properties on its motion; and the kinematic characteristics of axisymmetric squirmers. Finally, some open problems, challenges, and future directions are highlighted.
Collapse
|
8
|
Dadhichi LP, Kethapelli J, Chajwa R, Ramaswamy S, Maitra A. Nonmutual torques and the unimportance of motility for long-range order in two-dimensional flocks. Phys Rev E 2020; 101:052601. [PMID: 32575192 DOI: 10.1103/physreve.101.052601] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
As the constituent particles of a flock are polar and in a driven state, their interactions must, in general, be fore-aft asymmetric and nonreciprocal. Within a model that explicitly retains the classical spin angular momentum field of the particles we show that the resulting asymmetric contribution to interparticle torques, if large enough, leads to a buckling instability of the flock. More precisely, this asymmetry also yields a natural mechanism for a difference between the speed of advection of polarization information along the flock and the speed of the flock itself, concretely establishing that the absence of detailed balance, and not merely the breaking of Galilean invariance, is crucial for this distinction. To highlight this we construct a model of asymmetrically interacting spins fixed to lattice points and demonstrate that the speed of advection of polarization remains nonzero. We delineate the conditions on parameters and wave number for the existence of the buckling instability. Our theory should be consequential for interpreting the behavior of real animal groups as well as experimental studies of artificial flocks composed of polar motile rods on substrates.
Collapse
Affiliation(s)
- Lokrshi Prawar Dadhichi
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500 107, India
| | - Jitendra Kethapelli
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560 089, India
| | - Rahul Chajwa
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560 089, India
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - Ananyo Maitra
- Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005, Paris, France
| |
Collapse
|
9
|
Bagarti T, Menon SN. Milling and meandering: Flocking dynamics of stochastically interacting agents with a field of view. Phys Rev E 2019; 100:012609. [PMID: 31499806 DOI: 10.1103/physreve.100.012609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Indexed: 11/07/2022]
Abstract
We introduce a stochastic agent-based model for the flocking dynamics of self-propelled particles that exhibit nonlinear velocity-alignment interactions with neighbors within their field of view. The stochasticity in the dynamics is spatially heterogeneous and arises implicitly from the nature of the interparticle interactions. We observe long-time spatial cohesion in the emergent flocking dynamics, despite the absence of attractive forces that explicitly depend on the relative positions of particles. The wide array of flocking patterns exhibited by this model are characterized by identifying spatially distinct clusters and computing their corresponding angular momenta.
Collapse
Affiliation(s)
- Trilochan Bagarti
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| |
Collapse
|
10
|
Theers M, Westphal E, Qi K, Winkler RG, Gompper G. Clustering of microswimmers: interplay of shape and hydrodynamics. SOFT MATTER 2018; 14:8590-8603. [PMID: 30339172 DOI: 10.1039/c8sm01390j] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The spatiotemporal dynamics in systems of active self-propelled particles is controlled by the propulsion mechanism in combination with various direct interactions, such as steric repulsion and hydrodynamics. These direct interactions are typically anisotropic, and come in different "flavors", such as spherical and elongated particle shapes, pusher and puller flow fields, etc. The combination of the various aspects is expected to lead to new emergent behavior. However, it is a priori not evident whether shape and hydrodynamics act synergistically or antagonistically to generate motility-induced clustering (MIC) and phase separation (MIPS). We employ a model of prolate spheroidal microswimmers-called squirmers-in quasi-two-dimensional confinement to address this issue by mesoscale hydrodynamic simulations. For comparison, non-hydrodynamic active Brownian particles (ABPs) are considered to elucidate the contribution of hydrodynamic interactions. For spherical particles, the comparison between ABPs and hydrodynamic-squirmer ensembles reveals a suppression of MIPS due to hydrodynamic interactions. Yet, our analysis shows that dynamic clusters exist, with a broad size distribution. The fundamental difference between ABPs and squirmers is attributed to an increased reorientation of squirmers by hydrodynamic torques during their collisions. In contrast, for elongated squirmers, hydrodynamics interactions enhance MIPS. The transition to a phase-separated state strongly depends on the nature of the swimmer's flow field-with an increased tendency toward MIPS for pullers, and a reduced tendency for pushers. Thus, hydrodynamic interactions show opposing effects on MIPS for spherical and elongated microswimmers, and details of the propulsion mechanism of biological microswimmers may be very important to determine their collective behavior.
Collapse
Affiliation(s)
- Mario Theers
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|