1
|
Furuki T, Sakuta H, Yanagisawa N, Tabuchi S, Kamo A, Shimamoto DS, Yanagisawa M. Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil-Globule Transition of Coexisting DNA. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43016-43025. [PMID: 39088740 DOI: 10.1021/acsami.4c09362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil-globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet's dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet's central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.
Collapse
Affiliation(s)
- Tomohiro Furuki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Department of Integrated Sciences, College of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Hiroki Sakuta
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Naoya Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Shingo Tabuchi
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| | - Akari Kamo
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| | - Daisuke S Shimamoto
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Miho Yanagisawa
- Department of Integrated Sciences, College of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Knippenberg T, Jayaram A, Speck T, Bechinger C. Motility-Induced Clustering of Active Particles under Soft Confinement. PHYSICAL REVIEW LETTERS 2024; 133:048301. [PMID: 39121427 DOI: 10.1103/physrevlett.133.048301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/26/2024] [Indexed: 08/11/2024]
Abstract
We investigate the structural and dynamic properties of active Brownian particles (APs) confined within a soft annulus-shaped channel. Depending on the strength of the confinement and the Péclet number, we observe a novel reentrant behavior that is not present in unconfined systems. Our findings are substantiated by numerical simulations and analytical considerations, revealing that this behavior arises from the strong coupling between the Péclet number and the effective confining dimensionality of the APs. Our work highlights the peculiarities of soft boundaries for APs and how clogging can be avoided under such conditions.
Collapse
|
3
|
Wu-Zhang B, Fedosov DA, Gompper G. Collective behavior of squirmers in thin films. SOFT MATTER 2024; 20:5687-5702. [PMID: 38639062 DOI: 10.1039/d4sm00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Bacteria in biofilms form complex structures and can collectively migrate within mobile aggregates, which is referred to as swarming. This behavior is influenced by a combination of various factors, including morphological characteristics and propulsive forces of swimmers, their volume fraction within a confined environment, and hydrodynamic and steric interactions between them. In our study, we employ the squirmer model for microswimmers and the dissipative particle dynamics method for fluid modeling to investigate the collective motion of swimmers in thin films. The film thickness permits a free orientation of non-spherical squirmers, but constraints them to form a two-layered structure at maximum. Structural and dynamic properties of squirmer suspensions confined within the slit are analyzed for different volume fractions of swimmers, motility types (e.g., pusher, neutral squirmer, puller), and the presence of a rotlet dipolar flow field, which mimics the counter-rotating flow generated by flagellated bacteria. Different states are characterized, including a gas-like phase, swarming, and motility-induced phase separation, as a function of increasing volume fraction. Our study highlights the importance of an anisotropic swimmer shape, hydrodynamic interactions between squirmers, and their interaction with the walls for the emergence of different collective behaviors. Interestingly, the formation of collective structures may not be symmetric with respect to the two walls. Furthermore, the presence of a rotlet dipole significantly mitigates differences in the collective behavior between various swimmer types. These results contribute to a better understanding of the formation of bacterial biofilms and the emergence of collective states in confined active matter.
Collapse
Affiliation(s)
- Bohan Wu-Zhang
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
4
|
Bashan R, Oppenheimer N. Hydrodynamically induced aggregation of two dimensional oriented active particles. SOFT MATTER 2024; 20:3901-3909. [PMID: 38536066 DOI: 10.1039/d3sm01670f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We investigate a system of co-oriented active particles interacting only via hydrodynamic and steric interactions in a two-dimensional fluid. We offer a new method of calculating the flow created by any active particle in such a fluid, focusing on the dynamics of flow fields with a high-order spatial decay, which we analyze using a geometric Hamiltonian. We show that when the particles are oriented and the flow has a single, odd power decay, such systems lead to stable, fractal-like aggregation, with the only exception being the force dipole. We discuss how our results can easily be generalized to more complicated force distributions and to other effective two-dimensional systems.
Collapse
Affiliation(s)
- Roee Bashan
- School of Physics and Astronomy and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| | - Naomi Oppenheimer
- School of Physics and Astronomy and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| |
Collapse
|
5
|
Lee J, Cotter K, Elsadek I, Comstock MJ, Pressé S. Few-body hydrodynamic interactions probed by optical trap pulling experiment. J Chem Phys 2023; 159:024201. [PMID: 37431906 PMCID: PMC10338065 DOI: 10.1063/5.0148096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023] Open
Abstract
We study the hydrodynamic coupling of neighboring micro-beads placed in a multiple optical trap setup allowing us to precisely control the degree of coupling and directly measure time-dependent trajectories of entrained beads. We performed measurements on configurations with increasing complexity starting with a pair of entrained beads moving in one dimension, then in two dimensions, and finally a triplet of beads moving in two dimensions. The average experimental trajectories of a probe bead compare well with the theoretical computation, illustrating the role of viscous coupling and setting timescales for probe bead relaxation. The findings also provide direct experimental corroborations of hydrodynamic coupling at large, micrometer spatial scales and long, millisecond timescales, of relevance to, e.g., microfluidic device design and hydrodynamic-assisted colloidal assembly, improving the capability of optical tweezers, and understanding the coupling between micrometer-scale objects within a living cell.
Collapse
Affiliation(s)
- Julian Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, South Korea
| | - Kyle Cotter
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ibrahim Elsadek
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Matthew J Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
6
|
Samatas S, Lintuvuori J. Hydrodynamic Synchronization of Chiral Microswimmers. PHYSICAL REVIEW LETTERS 2023; 130:024001. [PMID: 36706412 DOI: 10.1103/physrevlett.130.024001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We study synchronization in bulk suspensions of spherical microswimmers with chiral trajectories using large scale numerics. The model is generic. It corresponds to the lowest order solution of a general model for self-propulsion at low Reynolds numbers, consisting of a nonaxisymmetric rotating source dipole. We show that both purely circular and helical swimmers can spontaneously synchronize their rotation. The synchronized state corresponds to velocity alignment with high orientational order in both the polar and azimuthal directions. Finally, we consider a racemic mixture of helical swimmers where intraspecies synchronization is observed while the system remains as a spatially uniform fluid. Our results demonstrate hydrodynamic synchronization as a natural collective phenomenon for microswimmers with chiral trajectories.
Collapse
Affiliation(s)
- Sotiris Samatas
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Juho Lintuvuori
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| |
Collapse
|
7
|
Maity R, Burada PS. Near- and far-field hydrodynamic interaction of two chiral squirmers. Phys Rev E 2022; 106:054613. [PMID: 36559415 DOI: 10.1103/physreve.106.054613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Hydrodynamic interaction strongly influences the collective behavior of microswimmers. With this work, we study the behavior of two hydrodynamically interacting self-propelled chiral swimmers in the low Reynolds number regime, considering both the near- and far-field interactions. We use the chiral squirmer model [see Burada et al., Phys. Rev. E 105, 024603 (2022)2470-004510.1103/PhysRevE.105.024603], a spherically shaped body with nonaxisymmetric surface slip velocity, which generalizes the well-known squirmer model. The previous work was restricted only to the case, while the far-field hydrodynamic interaction was influential among the swimmers. It did not approach the scenario while both the swimmers are very close and lubrication effects become dominant. We calculate the lubrication force between the swimmers when they are very close. By varying the slip coefficients and the initial configuration of the swimmers, we investigate their hydrodynamic behavior. In the presence of lubrication force, the swimmers either repel each other or exhibit bounded motion where the distance between the swimmers alters periodically. We identify the possible behaviors exhibited by the chiral squirmers, such as monotonic divergence, divergence, and bounded, as was found in the previous study. However, in the current study, we observe that both the monotonic convergence and the convergence states are converted into divergence states due to the arising lubrication effects. The lubrication force favors the bounded motion in some parameter regimes. This study helps to understand the collective behavior of dense suspension of ciliated microorganisms and artificial swimmers.
Collapse
Affiliation(s)
- Ruma Maity
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - P S Burada
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
8
|
Zantop AW, Stark H. Emergent collective dynamics of pusher and puller squirmer rods: swarming, clustering, and turbulence. SOFT MATTER 2022; 18:6179-6191. [PMID: 35822601 DOI: 10.1039/d2sm00449f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the interplay of steric and hydrodynamic interactions in suspensions of elongated microswimmers by simulating the full hydrodynamics of squirmer rods in the quasi two-dimensional geometry of a Hele-Shaw cell. To create pusher or puller-type squirmer rods, we concentrate the surface slip-velocity field more to the back or to the front of the rod and thereby are able to tune the rod's force-dipole strength. We study a wide range of aspect ratios and area fractions and provide corresponding state diagrams. The flow field of pusher-type squirmer rods destabilizes ordered structures and favors the disordered state at small area fractions and aspect ratios. Only when steric interactions become relevant, we observe a turbulent and dynamic cluster state, while for large aspect ratios a single swarm and jammed cluster occurs. The power spectrum of the turbulent state shows two distinct energy cascades at small and large wave numbers with power-law scaling and non-universal exponents. Pullers show a strong tendency to form swarms instead of the disordered state found for neutral and pusher rods. At large area fractions a dynamic cluster is observed and at larger aspect ratio a single swarm or jammed cluster occurs.
Collapse
Affiliation(s)
- Arne W Zantop
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| |
Collapse
|
9
|
Negi RS, Winkler RG, Gompper G. Emergent collective behavior of active Brownian particles with visual perception. SOFT MATTER 2022; 18:6167-6178. [PMID: 35916064 DOI: 10.1039/d2sm00736c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Systems comprised of self-steering active Brownian particles are studied via simulations for a minimal cognitive flocking model. The dynamics of the active Brownian particles is extended by an orientational response with limited maneuverability to an instantaneous visual input of the positions of neighbors within a vision cone and a cut-off radius. The system exhibits large-scale self-organized structures, which depend on selected parameter values, and, in particular, the presence of excluded-volume interactions. The emergent structures in two dimensions, such as worms, worm-aggregate coexistence, and hexagonally close-packed structures, are analysed and phase diagrams are constructed. The analysis of the particle's mean-square displacement shows ABP-like dynamics for dilute systems and the worm phase. In the limit of densely packed structures, the active diffusion coefficient is significantly smaller and depends on the number of particles in the cluster. Our analysis of the cluster-growth dynamics shows distinct differences to processes in systems of short-range attractive colloids in equilibrium. Specifically, the characteristic time for the growth and decay of clusters of a particular size is longer than that of isotropically attractive colloids, which we attribute to the non-reciprocal nature of the directed visual perception. Our simulations reveal a strong interplay between ABP-characteristic interactions, such as volume exclusion and rotational diffusion, and cognitive-based interactions and navigation.
Collapse
Affiliation(s)
- Rajendra Singh Negi
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| |
Collapse
|
10
|
Wen H, Zhu Y, Peng C, Kumar PBS, Laradji M. Collective motion of cells modeled as ring polymers. SOFT MATTER 2022; 18:1228-1238. [PMID: 35043821 DOI: 10.1039/d1sm01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this article, we use a coarse-grained model of disjoint semi-flexible ring polymers to investigate computationally the spatiotemporal collective behavior of cell colonies. A ring polymer in this model is self-propelled by a motility force along the cell's polarity, which depends on its historical kinetics. Despite the repulsive interaction between the cells, a collective behavior sets in as a result of cells pushing against each other. This cooperative motion emerges as the amplitude of the motility force is increased and/or their areal density is increased. The degree of collectivity, characterized by the average cluster size, the velocity field order parameter, and the polarity field nematic order parameter, is found to increase with increasing the amplitude of the motility force and area coverage of the cells. Furthermore, the degree of alignment exhibited by the cell velocity field within a cluster is found to be stronger than that exhibited by the cell polarity. Comparison between the collective behavior of elongated cells and that of circular cells, at the same area coverage and motility force, shows that elongated cells exhibit a stronger collective behavior than circular cells, in agreement with earlier studies of self-propelled anisotropic particles. An investigation of two-cell collisions shows that while two clustered cells move in tandem, their polarities are misaligned. As such the cells push against each other while moving coherently.
Collapse
Affiliation(s)
- Haosheng Wen
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - Chenhui Peng
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad-668557, Kerala, India
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
11
|
Sesé-Sansa E, Levis D, Pagonabarraga I. Phase separation of self-propelled disks with ferromagnetic and nematic alignment. Phys Rev E 2021; 104:054611. [PMID: 34942723 DOI: 10.1103/physreve.104.054611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022]
Abstract
We present a comprehensive study of a model system of repulsive self-propelled disks in two dimensions with ferromagnetic and nematic velocity alignment interactions. We characterize the phase behavior of the system as a function of the alignment and self-propulsion strength, featuring orientational order for strong alignment and motility-induced phase separation (MIPS) at moderate alignment but high enough self-propulsion. We derive a microscopic theory for these systems yielding a closed set of hydrodynamic equations from which we perform a linear stability analysis of the homogenous disordered state. This analysis predicts MIPS in the presence of aligning torques. The nature of the continuum theory allows for an explicit quantitative comparison with particle-based simulations, which consistently shows that ferromagnetic alignment fosters phase separation, while nematic alignment does not alter either the nature or the location of the instability responsible for it. In the ferromagnetic case, such behavior is due to an increase of the imbalance of the number of particle collisions along different orientations, giving rise to the self-trapping of particles along their self-propulsion direction. On the contrary, the anisotropy of the pair correlation function, which encodes this self-trapping effect, is not significantly affected by nematic torques. Our work shows the predictive power of such microscopic theories to describe complex active matter systems with different interaction symmetries and sheds light on the impact of velocity-alignment interactions in motility-induced phase separation.
Collapse
Affiliation(s)
- Elena Sesé-Sansa
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
| | - Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Ignacio Pagonabarraga
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland.,Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| |
Collapse
|
12
|
Liebchen B, Mukhopadhyay AK. Interactions in active colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:083002. [PMID: 34788232 DOI: 10.1088/1361-648x/ac3a86] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The past two decades have seen a remarkable progress in the development of synthetic colloidal agents which are capable of creating directed motion in an unbiased environment at the microscale. These self-propelling particles are often praised for their enormous potential to self-organize into dynamic nonequilibrium structures such as living clusters, synchronized super-rotor structures or self-propelling molecules featuring a complexity which is rarely found outside of the living world. However, the precise mechanisms underlying the formation and dynamics of many of these structures are still barely understood, which is likely to hinge on the gaps in our understanding of how active colloids interact. In particular, besides showing comparatively short-ranged interactions which are well known from passive colloids (Van der Waals, electrostatic etc), active colloids show novel hydrodynamic interactions as well as phoretic and substrate-mediated 'osmotic' cross-interactions which hinge on the action of the phoretic field gradients which are induced by the colloids on other colloids in the system. The present article discusses the complexity and the intriguing properties of these interactions which in general are long-ranged, non-instantaneous, non-pairwise and non-reciprocal and which may serve as key ingredients for the design of future nonequilibrium colloidal materials. Besides providing a brief overview on the state of the art of our understanding of these interactions a key aim of this review is to emphasize open key questions and corresponding open challenges.
Collapse
Affiliation(s)
- Benno Liebchen
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Aritra K Mukhopadhyay
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
13
|
Zantop AW, Stark H. Multi-particle collision dynamics with a non-ideal equation of state. II. Collective dynamics of elongated squirmer rods. J Chem Phys 2021; 155:134904. [PMID: 34624984 DOI: 10.1063/5.0064558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Simulations of flow fields around microscopic objects typically require methods that both solve the Navier-Stokes equations and also include thermal fluctuations. One such method popular in the field of soft-matter physics is the particle-based simulation method of multi-particle collision dynamics (MPCD). However, in contrast to the typically incompressible real fluid, the fluid of the traditional MPCD methods obeys the ideal-gas equation of state. This can be problematic because most fluid properties strongly depend on the fluid density. In a recent article, we proposed an extended MPCD algorithm and derived its non-ideal equation of state and an expression for the viscosity. In the present work, we demonstrate its accuracy and efficiency for the simulations of the flow fields of single squirmers and of the collective dynamics of squirmer rods. We use two exemplary squirmer-rod systems for which we compare the outcome of the extended MPCD method to the well-established MPCD version with an Andersen thermostat. First, we explicitly demonstrate the reduced compressibility of the MPCD fluid in a cluster of squirmer rods. Second, for shorter rods, we show the interesting result that in simulations with the extended MPCD method, dynamic swarms are more pronounced and have a higher polar order. Finally, we present a thorough study of the state diagram of squirmer rods moving in the center plane of a Hele-Shaw geometry. From a small to large aspect ratio and density, we observe a disordered state, dynamic swarms, a single swarm, and a jammed cluster, which we characterize accordingly.
Collapse
Affiliation(s)
- Arne W Zantop
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Holger Stark
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
14
|
A Review on the Some Issues of Multiphase Flow with Self-Driven Particles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiphase flow with self-driven particles is ubiquitous and complex. Exploring the flow properties has both important academic meaning and engineering value. This review emphasizes some recent studies on multiphase flow with self-driven particles: the hydrodynamic interactions between self-propelled/self-rotary particles and passive particles; the aggregation, phase separation and sedimentation of squirmers; the influence of rheological properties on its motion; and the kinematic characteristics of axisymmetric squirmers. Finally, some open problems, challenges, and future directions are highlighted.
Collapse
|
15
|
Liao GJ, Klapp SHL. Emergent vortices and phase separation in systems of chiral active particles with dipolar interactions. SOFT MATTER 2021; 17:6833-6847. [PMID: 34223596 DOI: 10.1039/d1sm00545f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using Brownian dynamics (BD) simulations we investigate the self-organization of a monolayer of chiral active particles with dipolar interactions. Each particle is driven by both, translational and rotational self-propulsion, and carries a permanent point dipole moment at its center. The direction of the translational propulsion for each particle is chosen to be parallel to its dipole moment. Simulations are performed at high dipolar coupling strength and a density below that related to motility-induced phase separation in simple active Brownian particles. Despite this restriction, we observe a wealth of phenomena including formation of two types of vortices, phase separation, and flocking transitions. To understand the appearance and disappearance of vortices in the many-particle system, we further investigate the dynamics of simple ring structures under the impact of self-propulsion.
Collapse
Affiliation(s)
- Guo-Jun Liao
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany.
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany.
| |
Collapse
|
16
|
Fazli Z, Naji A. Active particles with polar alignment in ring-shaped confinement. Phys Rev E 2021; 103:022601. [PMID: 33736018 DOI: 10.1103/physreve.103.022601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
We study steady-state properties of active, nonchiral and chiral Brownian particles with polar alignment and steric interactions confined within a ring-shaped confinement (annulus) in two dimensions. Exploring possible interplays between polar interparticle alignment, geometric confinement and the surface curvature, being incorporated here on minimal levels, we report a surface-population reversal effect, whereby active particles migrate from the outer concave boundary of the annulus to accumulate on its inner convex boundary. This contrasts the conventional picture, implying stronger accumulation of active particles on concave boundaries relative to the convex ones. The population reversal is caused by both particle alignment and surface curvature, disappearing when either of these factors is absent. We explore the ensuing consequences for the chirality-induced current and swim pressure of active particles and analyze possible roles of system parameters, such as the mean number density of particles and particle self-propulsion, chirality, and alignment strengths.
Collapse
Affiliation(s)
- Zahra Fazli
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.,School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
17
|
Clopés J, Gompper G, Winkler RG. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion. SOFT MATTER 2020; 16:10676-10687. [PMID: 33089276 DOI: 10.1039/d0sm01569e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrodynamic interactions are fundamental for the dynamics of swimming self-propelled particles. Specifically, bonds between microswimmers enforce permanent spatial proximity and, thus, enhance emergent correlations by microswimmer-specific flow fields. We employ the squirmer model to study the swimming behavior of microswimmer dumbbells by mesoscale hydrodynamic simulations, where the squirmers' rotational motion is geometrically unrestricted. An important aspect of the applied particle-based simulation approach-the multiparticle collision dynamics method-is the intrinsic account for thermal fluctuations. We find a strong effect of active stress on the motility of dumbbells. In particular, pairs of strong pullers exhibit orders of magnitude smaller swimming efficiency than pairs of pushers. This is a consequence of the inherent thermal fluctuations in combination with the strong coupling of the squirmers' rotational motion, which implies non-exponentially decaying auto- and cross-correlation functions of the propulsion directions, and active stress-dependent characteristic decay times. As a consequence, specific stationary-state relative alignments of the squirmer propulsion directions emerge, where pullers are preferentially aligned in an antiparallel manner along the bond vector, whereas pushers are preferentially aligned normal to the bond vector with a relative angle of approximately 60° at weak active stress, and one of the propulsion directions is aligned with the bond at strong active stress. The distinct differences between dumbbells comprised of pusher or pullers suggest means to control microswimmer assemblies for future microbot applications.
Collapse
Affiliation(s)
- Judit Clopés
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany.
| | | | | |
Collapse
|
18
|
Affiliation(s)
- Roland G. Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
19
|
Bárdfalvy D, Anjum S, Nardini C, Morozov A, Stenhammar J. Symmetric Mixtures of Pusher and Puller Microswimmers Behave as Noninteracting Suspensions. PHYSICAL REVIEW LETTERS 2020; 125:018003. [PMID: 32678625 DOI: 10.1103/physrevlett.125.018003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Suspensions of rear- and front-actuated microswimmers immersed in a fluid, known respectively as "pushers" and "pullers," display qualitatively different collective behaviors: beyond a characteristic density, pusher suspensions exhibit a hydrodynamic instability leading to collective motion known as active turbulence, a phenomenon which is absent for pullers. In this Letter, we describe the collective dynamics of a binary pusher-puller mixture using kinetic theory and large-scale particle-resolved simulations. We derive and verify an instability criterion, showing that the critical density for active turbulence moves to higher values as the fraction χ of pullers is increased and disappears for χ≥0.5. We then show analytically and numerically that the two-point hydrodynamic correlations of the 1∶1 mixture are equal to those of a suspension of noninteracting swimmers. Strikingly, our numerical analysis furthermore shows that the full probability distribution of the fluid velocity fluctuations collapses onto the one of a noninteracting system at the same density, where swimmer-swimmer correlations are strictly absent. Our results thus indicate that the fluid velocity fluctuations in 1∶1 pusher-puller mixtures are exactly equal to those of the corresponding noninteracting suspension at any density, a surprising cancellation with no counterpart in equilibrium long-range interacting systems.
Collapse
Affiliation(s)
- Dóra Bárdfalvy
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Shan Anjum
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Cesare Nardini
- Service de Physique de l'État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France
| | - Alexander Morozov
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| |
Collapse
|
20
|
Ma Z, Yang M, Ni R. Dynamic Assembly of Active Colloids: Theory and Simulation. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhan Ma
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang Drive, 637459 Singapore
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing 100190 China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing 100049 China
| | - Ran Ni
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
21
|
Maloney RC, Liao GJ, Klapp SHL, Hall CK. Clustering and phase separation in mixtures of dipolar and active particles. SOFT MATTER 2020; 16:3779-3791. [PMID: 32239046 DOI: 10.1039/c9sm02311a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly of colloidal particles in dynamic environments has become an important field of study because of potential applications in fabricating out-of-equilibrium materials. We investigate the phase behavior of mixtures of passive dipolar colloids and active soft spheres using Brownian dynamics simulations in two dimensions. The phase behaviors exhibited include dipolar percolated network, dipolar string-fluid, isotropic fluid, and a phase-separated state. We find that the clustering of dipolar colloids is enhanced in the presence of slow-moving active particles compared to the clustering of dipolar particles mixed with passive particles. When the active particle motility is high, the chains of dipolar particles are either broken into short chains or pushed into dense clusters. Motility-induced phase separation into dense and dilute phases is also present. The area fraction of particles in the dilute phase increases as the fraction of active particles in the system decreases, while the area fraction of particles in the dense phase remains constant. Our findings are relevant to the development of reconfigurable self-assembled materials.
Collapse
Affiliation(s)
- Ryan C Maloney
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Guo-Jun Liao
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D10623 Berlin, Germany
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D10623 Berlin, Germany
| | - Carol K Hall
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
22
|
Liao GJ, Hall CK, Klapp SHL. Dynamical self-assembly of dipolar active Brownian particles in two dimensions. SOFT MATTER 2020; 16:2208-2223. [PMID: 32090218 DOI: 10.1039/c9sm01539f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Based on Brownian Dynamics (BD) simulations, we study the dynamical self-assembly of active Brownian particles with dipole-dipole interactions, stemming from a permanent point dipole at the particle center. The propulsion direction of each particle is chosen to be parallel to its dipole moment. We explore a wide range of motilities and dipolar coupling strengths and characterize the corresponding behavior based on several order parameters. At low densities and low motilities, the most important structural phenomenon is the aggregation of the dipolar particles into chains. Upon increasing the particle motility, these chain-like structures break, and the system transforms into a weakly correlated isotropic fluid. At high densities, we observe that the motility-induced phase separation is strongly suppressed by the dipolar coupling. Once the dipolar coupling dominates the thermal energy, the phase separation disappears, and the system rather displays a flocking state, where particles form giant clusters and move collective along one direction. We provide arguments for the emergence of the flocking behavior, which is absent in the passive dipolar system.
Collapse
Affiliation(s)
- Guo-Jun Liao
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany.
| | - Carol K Hall
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany.
| |
Collapse
|
23
|
Tokunaga K, Akiyama R. Molecular dynamics study of a solvation motor in a Lennard-Jones solvent. Phys Rev E 2020; 100:062608. [PMID: 31962405 DOI: 10.1103/physreve.100.062608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Indexed: 11/06/2022]
Abstract
The motions of a solvation motor in a Lennard-Jones solvent were calculated by using molecular dynamics simulation. The results were analyzed considering the large spatial scale effects caused by the motion of the solvation motor. A reaction site was located on the surface of the solvation motor and the attraction between the reaction site and the solvent molecules was varied for 100 fs. The motion of the motor was driven by solvation changes near the reaction site on the motor. Two finite-size effects were observed in the motion. One was the hydrodynamic effect and the other was the increase in solvent viscosity caused by heat generation. The latter affected not only the displacement of the motor caused by the reaction but also the wave propagation phenomena. Both effects reduced the motor displacement. Heat generation affects the displacement, in particular for small systems. By contrast, the hydrodynamic effect remained even for large systems. An extrapolation method was proposed for the displacement.
Collapse
Affiliation(s)
- Ken Tokunaga
- Division of Liberal Arts, Center for Promotion of Higher Education, Kogakuin University, Nakano machi 2665-1, Hachioji, Tokyo 192-0015, Japan
| | - Ryo Akiyama
- Department of Chemistry, Graduate School of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
24
|
Bárdfalvy D, Nordanger H, Nardini C, Morozov A, Stenhammar J. Particle-resolved lattice Boltzmann simulations of 3-dimensional active turbulence. SOFT MATTER 2019; 15:7747-7756. [PMID: 31393504 DOI: 10.1039/c9sm00774a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collective behaviour in suspensions of microswimmers is often dominated by the impact of long-ranged hydrodynamic interactions. These phenomena include active turbulence, where suspensions of pusher bacteria at sufficient densities exhibit large-scale, chaotic flows. To study this collective phenomenon, we use large-scale (up to N = 3 × 106) particle-resolved lattice Boltzmann simulations of model microswimmers described by extended stresslets. Such system sizes enable us to obtain quantitative information about both the transition to active turbulence and characteristic features of the turbulent state itself. In the dilute limit, we test analytical predictions for a number of static and dynamic properties against our simulation results. For higher swimmer densities, where swimmer-swimmer interactions become significant, we numerically show that the length- and timescales of the turbulent flows increase steeply near the predicted finite-system transition density.
Collapse
Affiliation(s)
- Dóra Bárdfalvy
- Division of Physical Chemistry, Lund University, Box 124, S-221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Bayati P, Popescu MN, Uspal WE, Dietrich S, Najafi A. Dynamics near planar walls for various model self-phoretic particles. SOFT MATTER 2019; 15:5644-5672. [PMID: 31245803 DOI: 10.1039/c9sm00488b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
For chemically active particles suspended in a liquid solution and moving by self-phoresis, the dynamics near chemically inert, planar walls is studied theoretically by employing various choices for the activity function, i.e., the spatial distribution of the sites where various chemical reactions take place. We focus on the case of solutions composed of electrically neutral species. This analysis extends previous studies of the case that the chemical activity can be modeled effectively as the release of a "product" molecular species from parts of the surface of the particle by accounting for annihilation of the product molecules by chemical reactions, either on the rest of the surface of the particle or in the volume of the surrounding solution. We show that, for the models considered here, the emergence of "sliding" and "hovering" wall-bound states is a generic, robust feature. However, the details of these states, such as the range of parameters within which they occur, depend on the specific model for the activity function. Additionally, in certain cases there is a reversal of the direction of the motion compared to the one observed if the particle is far away from the wall. We have also studied the changes of the dynamics induced by a direct interaction between the particle and the wall by including a short-ranged repulsive component to the interaction in addition to the steric one (a procedure often employed in numerical simulations of active colloids). Upon increasing the strength of this additional component, while keeping its range fixed, significant qualitative changes occur in the phase portraits of the dynamics near the wall: for sufficiently strong short-ranged repulsion, the sliding steady states of the dynamics are transformed into hovering states. Furthermore, our studies provide evidence for an additional "oscillatory" wall-bound steady state of motion for chemically active particles due to a strong, short-ranged, and direct repulsion. This kind of particle translates along the wall at a distance from it which oscillates between a minimum and a maximum.
Collapse
Affiliation(s)
- Parvin Bayati
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Mihail N Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - William E Uspal
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany and Department of Mechanical Engineering, University of Hawai'i at Manoa, 2540 Dole Street, Holmes 302, Honolulu, HI 96822, USA
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Ali Najafi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. and Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
26
|
Massana-Cid H, Navarro-Argemí E, Levis D, Pagonabarraga I, Tierno P. Leap-frog transport of magnetically driven anisotropic colloidal rotors. J Chem Phys 2019; 150:164901. [DOI: 10.1063/1.5086280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Helena Massana-Cid
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Eloy Navarro-Argemí
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
27
|
Abstract
Despite mounting evidence that the same gradients, which active colloids use for swimming, induce important cross-interactions (phoretic interactions), they are still ignored in most many-body descriptions, perhaps to avoid complexity and a zoo of unknown parameters. Here we derive a simple model, which reduces phoretic far-field interactions to a pair-interaction whose strength is mainly controlled by one genuine parameter (swimming speed). The model suggests that phoretic interactions are generically important for autophoretic colloids (unless effective screening of the phoretic fields is strong) and should dominate over hydrodynamic interactions for the typical case of half-coating and moderately nonuniform surface mobilities. Unlike standard minimal models, but in accordance with canonical experiments, our model generically predicts dynamic clustering in active colloids at a low density. This suggests that dynamic clustering can emerge from the interplay of screened phoretic attractions and active diffusion.
Collapse
Affiliation(s)
- Benno Liebchen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Theers M, Westphal E, Qi K, Winkler RG, Gompper G. Clustering of microswimmers: interplay of shape and hydrodynamics. SOFT MATTER 2018; 14:8590-8603. [PMID: 30339172 DOI: 10.1039/c8sm01390j] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The spatiotemporal dynamics in systems of active self-propelled particles is controlled by the propulsion mechanism in combination with various direct interactions, such as steric repulsion and hydrodynamics. These direct interactions are typically anisotropic, and come in different "flavors", such as spherical and elongated particle shapes, pusher and puller flow fields, etc. The combination of the various aspects is expected to lead to new emergent behavior. However, it is a priori not evident whether shape and hydrodynamics act synergistically or antagonistically to generate motility-induced clustering (MIC) and phase separation (MIPS). We employ a model of prolate spheroidal microswimmers-called squirmers-in quasi-two-dimensional confinement to address this issue by mesoscale hydrodynamic simulations. For comparison, non-hydrodynamic active Brownian particles (ABPs) are considered to elucidate the contribution of hydrodynamic interactions. For spherical particles, the comparison between ABPs and hydrodynamic-squirmer ensembles reveals a suppression of MIPS due to hydrodynamic interactions. Yet, our analysis shows that dynamic clusters exist, with a broad size distribution. The fundamental difference between ABPs and squirmers is attributed to an increased reorientation of squirmers by hydrodynamic torques during their collisions. In contrast, for elongated squirmers, hydrodynamics interactions enhance MIPS. The transition to a phase-separated state strongly depends on the nature of the swimmer's flow field-with an increased tendency toward MIPS for pullers, and a reduced tendency for pushers. Thus, hydrodynamic interactions show opposing effects on MIPS for spherical and elongated microswimmers, and details of the propulsion mechanism of biological microswimmers may be very important to determine their collective behavior.
Collapse
Affiliation(s)
- Mario Theers
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
29
|
Yoshinaga N, Liverpool TB. From hydrodynamic lubrication to many-body interactions in dense suspensions of active swimmers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:76. [PMID: 29926216 DOI: 10.1140/epje/i2018-11683-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
We study how hydrodynamic interactions affect the collective behaviour of active particles suspended in a fluid at high concentrations, with particular attention to lubrication forces which appear when the particles are very close to one another. We compute exactly the limiting behaviour of the hydrodynamic interactions between two spherical (circular) active swimmers in very close proximity to one another in the general setting in both three and (two) dimensions. Combining this with far-field interactions, we develop a novel numerical scheme which allows us to study the collective behaviour of large numbers of active particles with accurate hydrodynamic interactions when close to one another. We study active swimmers whose intrinsic flow fields are characterised by force dipoles and quadrupoles. Using this scheme, we are able to show that lubrication forces when the particles are very close to each other can play as important a role as long-range hydrodynamic interactions in determining their many-body behaviour. We find that when the swimmer force dipole is large, finite clusters and open gel-like clusters appear rather than complete phase separation. This suppression is due to near-field lubrication interactions. For swimmers with small force dipoles, we find surprisingly that a globally polar-ordered phase appears because near-field lubrication rather than long-range hydrodynamics dominates the alignment mechanism. Polar order is present for very large system sizes and is stable to fluctuations with a finite noise amplitude. We explain the emergence of polar order using a minimal model in which only the leading rotational effect of the near-field interaction is included. These phenomena are also reproduced in two dimensions.
Collapse
Affiliation(s)
- Natsuhiko Yoshinaga
- WPI - Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan.
- MathAM-OIL, AIST, 980-8577, Sendai, Japan.
- The Kavli Institute for Theoretical Physics, University of California, 93106, Santa Barbara, CA, USA.
| | - Tanniemola B Liverpool
- The Kavli Institute for Theoretical Physics, University of California, 93106, Santa Barbara, CA, USA
- School of Mathematics, University of Bristol, BS8 1TW, Bristol, UK
- BrisSynBio, Life Sciences Building, Tyndall Avenue, BS8 1TQ, Bristol, UK
| |
Collapse
|
30
|
Zöttl A, Stark H. Simulating squirmers with multiparticle collision dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:61. [PMID: 29766348 DOI: 10.1140/epje/i2018-11670-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Multiparticle collision dynamics is a modern coarse-grained simulation technique to treat the hydrodynamics of Newtonian fluids by solving the Navier-Stokes equations. Naturally, it also includes thermal noise. Initially it has been applied extensively to spherical colloids or bead-spring polymers immersed in a fluid. Here, we review and discuss the use of multiparticle collision dynamics for studying the motion of spherical model microswimmers called squirmers moving in viscous fluids.
Collapse
Affiliation(s)
- Andreas Zöttl
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford, UK.
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.
| | - Holger Stark
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| |
Collapse
|