1
|
Beyer K, Strunz WT. Operational Work Fluctuation Theorem for Open Quantum Systems. PHYSICAL REVIEW LETTERS 2025; 134:140403. [PMID: 40279605 DOI: 10.1103/physrevlett.134.140403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/11/2025] [Indexed: 04/27/2025]
Abstract
The classical Jarzynski equality establishes an exact relation between the stochastic work performed on a system driven out of thermal equilibrium and the free energy difference in a corresponding quasistatic process. This fluctuation theorem bears experimental relevance, as it enables the determination of the free energy difference through the measurement of externally applied work in a nonequilibrium process. In the quantum case, the Jarzynski equality only holds if the measurement procedure of the stochastic work is drastically changed: it is replaced by a so-called two-point measurement scheme that requires the knowledge of the initial and final Hamiltonian and therefore lacks the predictive power for the free energy difference that the classical Jarzynski equation is known for. Here, we propose a quantum fluctuation theorem that is valid for externally measurable quantum work determined during the driving protocol. In contrast to the two-point measurement case, the theorem also applies to open quantum systems and the scenario can be realized without knowing the system Hamiltonian. Our fluctuation theorem comes in the form of an inequality and therefore only yields bounds to the true free energy difference. The inequality is saturated in the quasiclassical case of vanishing energy coherences at the beginning and at the end of the protocol. Thus, there is a clear quantum disadvantage.
Collapse
Affiliation(s)
- Konstantin Beyer
- Stevens Institute of Technology, Department of Physics, Hoboken, New Jersey 07030, USA
- TUD Dresden University of Technology, Institute of Theoretical Physics, 01062, Dresden, Germany
| | - Walter T Strunz
- TUD Dresden University of Technology, Institute of Theoretical Physics, 01062, Dresden, Germany
| |
Collapse
|
2
|
Wang Y, Xia S, Lin X, Pan O, Chen J, Su S. Finite-time measurement-driven Otto cycle. Phys Rev E 2024; 110:L052102. [PMID: 39690646 DOI: 10.1103/physreve.110.l052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/08/2024] [Indexed: 12/19/2024]
Abstract
A novel quantum Otto heat engine that operates within a finite-time framework by incorporating measurement procedures is proposed. Departing from conventional quantum Otto heat engines, our model replaces the heat absorption process from a high-temperature source with invasive measurement. Moreover, we consider finite-time thermodynamic manipulation in each step. Our model focuses on exploring the effects of the angles of the measurement basis on the Bloch sphere and the timings of time-dependent evolutions on thermodynamic properties, with a specific emphasis on the trade-off between the power output and the efficiency. Our findings demonstrate that by carefully selecting specific parameters, the efficiency and overall performance of this heat engine can be significantly enhanced.
Collapse
|
3
|
Perna G, Calzetta E. Limits on quantum measurement engines. Phys Rev E 2024; 109:044102. [PMID: 38755920 DOI: 10.1103/physreve.109.044102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 05/18/2024]
Abstract
A quantum measurement involves energy exchanges between the system to be measured and the measuring apparatus. Some of them involve energy losses, for example because energy is dissipated into the environment or is spent in recording the measurement outcome. Moreover, these processes take time. For this reason, these exchanges must be taken into account in the analysis of a quantum measurement engine, and set limits to its efficiency and power. We propose a quantum engine based on a spin 1/2 particle in a magnetic field and study its limitations due to the quantum nature of the evolution. The coupling with the electromagnetic vacuum is taken into account and plays the role of a measurement apparatus. We fully study its dynamics, work, power, and efficiency.
Collapse
Affiliation(s)
- Guillermo Perna
- Departamento de Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina and CONICET - Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires CP 1428, Argentina
| | - Esteban Calzetta
- Departamento de Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina and CONICET - Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires CP 1428, Argentina
| |
Collapse
|
4
|
El Makouri A, Slaoui A, Ahl Laamara R. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants. Phys Rev E 2023; 108:044114. [PMID: 37978648 DOI: 10.1103/physreve.108.044114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
Recently, measurement-based quantum thermal machines have drawn more attention in the field of quantum thermodynamics. However, the previous results on quantum Otto heat engines were either limited to special unital and nonunital channels in the bath stages, or a specific driving protocol at the work strokes and assuming the cycle being time-reversal symmetric, i.e., V^{†}=U (or V=U). In this paper, we consider a single spin-1/2 quantum Otto heat engine, by first replacing one of the heat baths by an arbitrary unital channel, and then we give the exact analytical expression of the characteristic function from which all the cumulants of heat and work emerge. We prove that under the effect of monitoring, ν_{2}>ν_{1} is a necessary condition for positive work, either for a symmetric or asymmetric-driven Otto cycle. Furthermore, going beyond the average we show that the ratio of the fluctuations of work and heat is lower and upper-bounded when the system is working as a heat engine. However, differently from the previous results in the literature, we consider the third and fourth cumulants as well. It is shown that the ratio of the third (fourth) cumulants of work and heat is not upper-bounded by unity nor lower-bounded by the third (fourth) power of the efficiency, as is the case for the ratio of fluctuations. Finally, we consider applying a specific unital map that plays the role of a heat bath in a coherently superposed manner, and we show the role of the initial coherence of the control qubit on efficiency, on the average work and its relative fluctuations.
Collapse
Affiliation(s)
- Abdelkader El Makouri
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdallah Slaoui
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Centre of Physics and Mathematics, CPM, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Rachid Ahl Laamara
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Centre of Physics and Mathematics, CPM, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
5
|
Koshihara K, Yuasa K. Quantum ergotropy and quantum feedback control. Phys Rev E 2023; 107:064109. [PMID: 37464633 DOI: 10.1103/physreve.107.064109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/08/2023] [Indexed: 07/20/2023]
Abstract
We study the energy extraction from and charging to a finite-dimensional quantum system by general quantum operations. We prove that the changes in energy induced by unital quantum operations are limited by the ergotropy and charging bounds for unitary quantum operations. This implies that, in order to break the ergotropy bound for unitary quantum operations, one needs to perform a quantum operation with feedback control. We also show that the ergotropy bound for unital quantum operations, applied to initial thermal equilibrium states, is tighter than the inequality representing the standard second law of thermodynamics without feedback control.
Collapse
Affiliation(s)
- Kenta Koshihara
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| | - Kazuya Yuasa
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
6
|
Purkait C, Biswas A. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times. Phys Rev E 2023; 107:054110. [PMID: 37329072 DOI: 10.1103/physreve.107.054110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/14/2023] [Indexed: 06/18/2023]
Abstract
We have studied the performance of a measurement-based quantum Otto engine (QOE) in a working system of two spins coupled by Heisenberg anisotropic interaction. A nonselective quantum measurement fuels the engine. We have calculated thermodynamic quantities of the cycle in terms of the transition probabilities between the instantaneous energy eigenstates, and also between the instantaneous energy eigenstates and the basis states of the measurement, when the unitary stages of the cycle operate for a finite time τ. The efficiency attains a large value in the limit of τ→0 and then gradually reaches the adiabatic value in a long-time limit τ→∞. For finite values of τ and for anisotropic interaction, an oscillatory behavior of the efficiency of the engine is observed. This oscillation can be interpreted in terms of interference between the relevant transition amplitudes in the unitary stages of the engine cycle. Therefore, for a suitable choice of timing of the unitary processes in the short time regime, the engine can have a higher work output and less heat absorption, such that it works more efficiently than a quasistatic engine. In the case of an always-on heat bath, in a very short time, the bath has a negligible effect on its performance.
Collapse
Affiliation(s)
- Chayan Purkait
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Asoka Biswas
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
7
|
Kaneyasu M, Hasegawa Y. Quantum Otto cycle under strong coupling. Phys Rev E 2023; 107:044127. [PMID: 37198760 DOI: 10.1103/physreve.107.044127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/19/2023]
Abstract
Quantum heat engines are often discussed under the weak-coupling assumption that the interaction between the system and the reservoirs is negligible. Although this setup is easier to analyze, this assumption cannot be justified on the quantum scale. In this study, a quantum Otto cycle model that can be generally applied without the weak-coupling assumption is proposed. We replace the thermalization process in the weak-coupling model with a process comprising thermalization and decoupling. The efficiency of the proposed model is analytically calculated and indicates that, when the contribution of the interaction terms is neglected in the weak-interaction limit, it reduces to that of the earlier model. The sufficient condition for the efficiency of the proposed model not to surpass that of the weak-coupling model is that the decoupling processes of our model have a positive cost. Moreover, the relation between the interaction strength and the efficiency of the proposed model is numerically examined by using a simple two-level system. Furthermore, we show that our model's efficiency can surpass that of the weak-coupling model under particular cases. From analyzing the majorization relation, we also find a design method of the optimal interaction Hamiltonians, which are expected to provide the maximum efficiency of the proposed model. Under these interaction Hamiltonians, the numerical experiment shows that the proposed model achieves higher efficiency than that of its weak-coupling counterpart.
Collapse
Affiliation(s)
- Mao Kaneyasu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Arrachea L. Energy dynamics, heat production and heat-work conversion with qubits: toward the development of quantum machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:036501. [PMID: 36603220 DOI: 10.1088/1361-6633/acb06b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
We present an overview of recent advances in the study of energy dynamics and mechanisms for energy conversion in qubit systems with special focus on realizations in superconducting quantum circuits. We briefly introduce the relevant theoretical framework to analyze heat generation, energy transport and energy conversion in these systems with and without time-dependent driving considering the effect of equilibrium and non-equilibrium environments. We analyze specific problems and mechanisms under current investigation in the context of qubit systems. These include the problem of energy dissipation and possible routes for its control, energy pumping between driving sources and heat pumping between reservoirs, implementation of thermal machines and mechanisms for energy storage. We highlight the underlying fundamental phenomena related to geometrical and topological properties, as well as many-body correlations. We also present an overview of recent experimental activity in this field.
Collapse
Affiliation(s)
- Liliana Arrachea
- Escuela de Ciencia y Tecnología and ICIFI, Universidad de San Martín, Av. 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| |
Collapse
|
9
|
Bhandari B, Czupryniak R, Erdman PA, Jordan AN. Measurement-Based Quantum Thermal Machines with Feedback Control. ENTROPY (BASEL, SWITZERLAND) 2023; 25:204. [PMID: 36832571 PMCID: PMC9955564 DOI: 10.3390/e25020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
We investigated coupled-qubit-based thermal machines powered by quantum measurements and feedback. We considered two different versions of the machine: (1) a quantum Maxwell's demon, where the coupled-qubit system is connected to a detachable single shared bath, and (2) a measurement-assisted refrigerator, where the coupled-qubit system is in contact with a hot and cold bath. In the quantum Maxwell's demon case, we discuss both discrete and continuous measurements. We found that the power output from a single qubit-based device can be improved by coupling it to the second qubit. We further found that the simultaneous measurement of both qubits can produce higher net heat extraction compared to two setups operated in parallel where only single-qubit measurements are performed. In the refrigerator case, we used continuous measurement and unitary operations to power the coupled-qubit-based refrigerator. We found that the cooling power of a refrigerator operated with swap operations can be enhanced by performing suitable measurements.
Collapse
Affiliation(s)
- Bibek Bhandari
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
| | - Robert Czupryniak
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, NY 14627, USA
| | - Paolo Andrea Erdman
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Andrew N. Jordan
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
10
|
Misra A, Opatrný T, Kurizki G. Work extraction from single-mode thermal noise by measurements: How important is information? Phys Rev E 2022; 106:054131. [PMID: 36559367 DOI: 10.1103/physreve.106.054131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Our goal in this article is to elucidate the rapport of work and information in the context of a minimal quantum-mechanical setup: a converter of heat input to work output, the input consisting of a single oscillator mode prepared in a hot thermal state along with a few much colder oscillator modes. The core issues we consider, taking account of the quantum nature of the setup, are as follows: (i) How and to what extent can information act as a work resource or, conversely, be redundant for work extraction? (ii) What is the optimal way of extracting work via information acquired by measurements? (iii) What is the bearing of information on the efficiency-power tradeoff achievable in such setups? We compare the efficiency of work extraction and the limitations of power in our minimal setup by different, generic, measurement strategies of the hot and cold modes. For each strategy, the rapport of work and information extraction is found and the cost of information erasure is allowed for. The possibilities of work extraction without information acquisition, via nonselective measurements, are also analyzed. Overall, we present, by generalizing a method based on optimized homodyning that we have recently proposed, the following insight: extraction of work by observation and feedforward that only measures a small fraction of the input is clearly advantageous to the conceivable alternatives. Our results may become the basis of a practical strategy of converting thermal noise to useful work in optical setups, such as coherent amplifiers of thermal light, as well as in their optomechanical and photovoltaic counterparts.
Collapse
Affiliation(s)
- Avijit Misra
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel and International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Department of Physics, Shanghai University, 200444 Shanghai, China
| | - Tomáš Opatrný
- Department of Optics, Faculty of Science, Palacký University, 17. listopadu 50, 77146 Olomouc, Czech Republic
| | - Gershon Kurizki
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Stevens J, Szombati D, Maffei M, Elouard C, Assouly R, Cottet N, Dassonneville R, Ficheux Q, Zeppetzauer S, Bienfait A, Jordan AN, Auffèves A, Huard B. Energetics of a Single Qubit Gate. PHYSICAL REVIEW LETTERS 2022; 129:110601. [PMID: 36154409 DOI: 10.1103/physrevlett.129.110601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Qubits are physical, a quantum gate thus not only acts on the information carried by the qubit but also on its energy. What is then the corresponding flow of energy between the qubit and the controller that implements the gate? Here we exploit a superconducting platform to answer this question in the case of a quantum gate realized by a resonant drive field. During the gate, the superconducting qubit becomes entangled with the microwave drive pulse so that there is a quantum superposition between energy flows. We measure the energy change in the drive field conditioned on the outcome of a projective qubit measurement. We demonstrate that the drive's energy change associated with the measurement backaction can exceed by far the energy that can be extracted by the qubit. This can be understood by considering the qubit as a weak measurement apparatus of the driving field.
Collapse
Affiliation(s)
- J Stevens
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - D Szombati
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - M Maffei
- CNRS and Université Grenoble Alpes, Institut Néel, F-38042 Grenoble, France
| | - C Elouard
- QUANTIC team, INRIA de Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - R Assouly
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - N Cottet
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - R Dassonneville
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Q Ficheux
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - S Zeppetzauer
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - A Bienfait
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - A N Jordan
- Institute for Quantum Studies, Chapman University, 1 University Drive, Orange, California 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - A Auffèves
- CNRS and Université Grenoble Alpes, Institut Néel, F-38042 Grenoble, France
| | - B Huard
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
12
|
Koshihara K, Yuasa K. Necessity of feedback control for the quantum Maxwell demon in a finite-time steady feedback cycle. Phys Rev E 2022; 106:024134. [PMID: 36109897 DOI: 10.1103/physreve.106.024134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
We revisit quantum Maxwell demon in thermodynamic feedback cycle in the steady-state regime. We derive a generalized version of the Clausius inequality for a finite-time steady feedback cycle with a single heat bath. It is shown to be tighter than previously known ones, and allows us to clarify that feedback control is necessary to violate the standard Clausius inequality.
Collapse
Affiliation(s)
- Kenta Koshihara
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| | - Kazuya Yuasa
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
13
|
Manikandan SK, Elouard C, Murch KW, Auffèves A, Jordan AN. Efficiently fueling a quantum engine with incompatible measurements. Phys Rev E 2022; 105:044137. [PMID: 35590558 DOI: 10.1103/physreve.105.044137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
We propose a quantum harmonic oscillator measurement engine fueled by simultaneous quantum measurements of the noncommuting position and momentum quadratures of the quantum oscillator. The engine extracts work by moving the harmonic trap suddenly, conditioned on the measurement outcomes. We present two protocols for work extraction, respectively based on single-shot and time-continuous quantum measurements. In the single-shot limit, the oscillator is measured in a coherent state basis; the measurement adds an average of one quantum of energy to the oscillator, which is then extracted in the feedback step. In the time-continuous limit, continuous weak quantum measurements of both position and momentum of the quantum oscillator result in a coherent state, whose coordinates diffuse in time. We relate the extractable work to the noise added by quadrature measurements, and present exact results for the work distribution at arbitrary finite time. Both protocols can achieve unit work conversion efficiency in principle.
Collapse
Affiliation(s)
- Sreenath K Manikandan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
| | - Cyril Elouard
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- QUANTIC laboratory, INRIA Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - Kater W Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - Alexia Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Andrew N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Institute for Quantum Studies, Chapman University, Orange, California, 92866, USA
| |
Collapse
|
14
|
Anka MF, de Oliveira TR, Jonathan D. Measurement-based quantum heat engine in a multilevel system. Phys Rev E 2021; 104:054128. [PMID: 34942804 DOI: 10.1103/physreve.104.054128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022]
Abstract
We compare quantum Otto engines based on two different cycle models: a two-bath model, with a standard heat source and sink, and a measurement-based protocol, where the role of heat source is played by a quantum measurement. We furthermore study these cycles using two different "working substances": a single qutrit (spin-1 particle) or a pair of qubits (spin-1/2 particles) interacting via the XXZ Heisenberg interaction. Although both cycle models have the same efficiency when applied on a single-qubit working substance, we find that both can reach higher efficiencies using these more complex working substances by exploiting the existence of "idle" levels, i.e., levels that do not shift while the spins are subjected to a variable magnetic field. Furthermore, with an appropriate choice of measurement, the measurement-based protocol becomes more efficient than the two-bath model.
Collapse
Affiliation(s)
- Maron F Anka
- Instituto de Física Universidade Federal Fluminense - Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, Rio de Janeiro, Brazil
| | - Thiago R de Oliveira
- Instituto de Física Universidade Federal Fluminense - Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, Rio de Janeiro, Brazil
| | - Daniel Jonathan
- Instituto de Física Universidade Federal Fluminense - Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Bresque L, Camati PA, Rogers S, Murch K, Jordan AN, Auffèves A. Two-Qubit Engine Fueled by Entanglement and Local Measurements. PHYSICAL REVIEW LETTERS 2021; 126:120605. [PMID: 33834814 DOI: 10.1103/physrevlett.126.120605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
We introduce a two-qubit engine that is powered by entanglement and local measurements. Energy is extracted from the detuned qubits coherently exchanging a single excitation. Generalizing to an N-qubit chain, we show that the low energy of the first qubit can be up-converted to an arbitrarily high energy at the last qubit by successive neighbor swap operations and local measurements. We finally model the local measurement as the entanglement of a qubit with a meter, and we identify the fuel as the energetic cost to erase the correlations between the qubits. Our findings extend measurement-powered engines to composite working substances and provide a microscopic interpretation of the fueling mechanism.
Collapse
Affiliation(s)
- Léa Bresque
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Patrice A Camati
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Spencer Rogers
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Kater Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - Andrew N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
| | - Alexia Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
16
|
Chand S, Dasgupta S, Biswas A. Finite-time performance of a single-ion quantum Otto engine. Phys Rev E 2021; 103:032144. [PMID: 33862721 DOI: 10.1103/physreve.103.032144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
We study how a quantum heat engine based on a single trapped ion performs in finite time. The always-on thermal environment acts like the hot bath, while the motional degree of freedom of the ion plays the role of the effective cold bath. The hot isochoric stroke is implemented via the interaction of the ion with its hot environment, while a projective measurement of the internal state of the ion is performed as an equivalent to the cold isochoric stroke. The expansion and compression strokes are implemented via suitable change in applied magnetic field. We study in detail how the finite duration of each stroke affects the engine performance. We show that partial thermalization can in fact enhance the efficiency of the engine, due to the residual coherence, whereas faster expansion and compression strokes increase the inner friction and therefore reduce the efficiency.
Collapse
Affiliation(s)
- Suman Chand
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Shubhrangshu Dasgupta
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Asoka Biswas
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
17
|
Watanabe G, Venkatesh BP, Talkner P, Hwang MJ, Del Campo A. Quantum Statistical Enhancement of the Collective Performance of Multiple Bosonic Engines. PHYSICAL REVIEW LETTERS 2020; 124:210603. [PMID: 32530647 DOI: 10.1103/physrevlett.124.210603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
We consider an ensemble of indistinguishable quantum machines and show that quantum statistical effects can give rise to a genuine quantum enhancement of the collective thermodynamic performance. When multiple indistinguishable bosonic work resources are coupled to an external system, the internal energy change of the external system exhibits an enhancement arising from permutation symmetry in the ensemble, which is absent when the latter consists of distinguishable work resources.
Collapse
Affiliation(s)
- Gentaro Watanabe
- Department of Physics and Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | | | - Peter Talkner
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany
| | - Myung-Joong Hwang
- Division of Natural Sciences, Duke Kunshan University, No. 8 Duke Avenue, Kunshan, Jiangsu 215316, China
- Institute for Theoretical Physics, Ulm University, Albert-Einstein Allee 11, D-89081 Ulm, Germany
| | - Adolfo Del Campo
- Donostia International Physics Center, E-20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
- Department of Physics, University of Massachusetts, Boston, Massachusetts 02125, USA
| |
Collapse
|
18
|
Abstract
We consider measurement based single temperature quantum heat engine without feedback control, introduced recently by Yi, Talkner and Kim [Phys. Rev. E96, 022108 (2017)]. Taking the working medium of the engine to be a one-dimensional Heisenberg model of two spins, we calculate the efficiency of the engine undergoing a cyclic process. Starting with two spin-1/2 particles, we investigate the scenario of higher spins also. We show that, for this model of coupled working medium, efficiency can be higher than that of an uncoupled one. However, the relationship between the coupling constant and the efficiency of the engine is rather involved. We find that in the higher spin scenario efficiency can sometimes be negative (this means work has to be done to run the engine cycle) for certain range of coupling constants, in contrast to the aforesaid work of Yi, Talkner and Kim, where they showed that the extracted work is always positive in the absence of coupling. We provide arguments for this negative efficiency in higher spin scenarios. Interestingly, this happens only in the asymmetric scenarios, where the two spins are different. Given these facts, for judiciously chosen conditions, an engine with coupled working medium gives advantage for the efficiency over the uncoupled one.
Collapse
|
19
|
Wang J, He J, Ma Y. Finite-time performance of a quantum heat engine with a squeezed thermal bath. Phys Rev E 2019; 100:052126. [PMID: 31870038 DOI: 10.1103/physreve.100.052126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 06/10/2023]
Abstract
We consider the finite-time performance of a quantum Otto engine working between a hot squeezed and a cold thermal bath at inverse temperatures β_{h} and β_{c}(>β_{h}) with (k_{B}≡1)β=1/T. We derive the analytical expressions for work, efficiency, power, and power fluctuations, in which the squeezing parameter is involved. By optimizing the power output with respect to two frequencies, we derive the efficiency at maximum power as η_{mp}=(η_{C}^{gen})^{2}/[η_{C}^{gen}-(1-η_{C}^{gen})ln(1-η_{C}^{gen})], where the generalized Carnot efficiency η_{C}^{gen} in the high-temperature or small squeezing limit simplifies to an analytic function of squeezing parameter γ: η_{C}^{gen}=1-β_{h}/[β_{c}cosh(2γ)]. Within the context of irreversible thermodynamics, we demonstrate that the expression of efficiency at maximum power satisfies a general form derived from nonlinear steady state heat engines. We show that, the power fluctuations are considerably increased, although the engine efficiency is enhanced by squeezing.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Mohammady MH, Romito A. Efficiency of a cyclic quantum heat engine with finite-size baths. Phys Rev E 2019; 100:012122. [PMID: 31499920 DOI: 10.1103/physreve.100.012122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 11/07/2022]
Abstract
In this paper we investigate the relationship between the efficiency of a cyclic quantum heat engine with the Hilbert space dimension of the thermal baths. By means of a general inequality, we show that the Carnot efficiency can be obtained only when both the hot and cold baths are infinitely large. By further introducing a specific model where the baths are constituted of ensembles of finite-dimensional particles, we further demonstrate the relationship between the engine's power and efficiency, with the dimension of the working substance and the bath particles.
Collapse
Affiliation(s)
- M Hamed Mohammady
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom.,RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84511, Slovakia
| | - Alessandro Romito
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| |
Collapse
|
21
|
Guff T, Daryanoosh S, Baragiola BQ, Gilchrist A. Power and efficiency of a thermal engine with a coherent bath. Phys Rev E 2019; 100:032129. [PMID: 31639983 DOI: 10.1103/physreve.100.032129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 06/10/2023]
Abstract
We consider a quantum engine driven by repeated weak interactions with a heat bath of identical three-level atoms. This model was first introduced by Scully et al. [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], who showed that coherence between the energy-degenerate ground states serves as a thermodynamic resource that allows operation of a thermal cycle with a coherence-dependent thermalization temperature. We consider a similar engine out of the quasistatic limit and find that the ground-state coherence also determines the rate of thermalization, therefore increasing the output power and the engine efficiency only when the thermalization temperature is reduced; revealing a more nuanced perspective of coherence as a resource. This allows us to optimize the output power by adjusting the coherence and relative stroke durations.
Collapse
Affiliation(s)
- Thomas Guff
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| | - Shakib Daryanoosh
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| | - Ben Q Baragiola
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| | - Alexei Gilchrist
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| |
Collapse
|
22
|
Bernards F, Kleinmann M, Gühne O, Paternostro M. Daemonic Ergotropy: Generalised Measurements and Multipartite Settings. ENTROPY 2019; 21:e21080771. [PMID: 33267484 PMCID: PMC7515299 DOI: 10.3390/e21080771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/17/2022]
Abstract
Recently, the concept of daemonic ergotropy has been introduced to quantify the maximum energy that can be obtained from a quantum system through an ancilla-assisted work extraction protocol based on information gain via projective measurements [G. Francica et al., npj Quant. Inf. 3, 12 (2018)]. We prove that quantum correlations are not advantageous over classical correlations if projective measurements are considered. We go beyond the limitations of the original definition to include generalised measurements and provide an example in which this allows for a higher daemonic ergotropy. Moreover, we propose a see-saw algorithm to find a measurement that attains the maximum work extraction. Finally, we provide a multipartite generalisation of daemonic ergotropy that pinpoints the influence of multipartite quantum correlations, and study it for multipartite entangled and classical states.
Collapse
Affiliation(s)
- Fabian Bernards
- Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany
| | - Matthias Kleinmann
- Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany
| | - Otfried Gühne
- Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany
| | - Mauro Paternostro
- School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, UK
- Correspondence:
| |
Collapse
|
23
|
Harrington PM, Tan D, Naghiloo M, Murch KW. Characterizing a Statistical Arrow of Time in Quantum Measurement Dynamics. PHYSICAL REVIEW LETTERS 2019; 123:020502. [PMID: 31386500 DOI: 10.1103/physrevlett.123.020502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/02/2019] [Indexed: 06/10/2023]
Abstract
In both thermodynamics and quantum mechanics, the arrow of time is characterized by the statistical likelihood of physical processes. We characterize this arrow of time for the continuous quantum measurement dynamics of a superconducting qubit. By experimentally tracking individual weak measurement trajectories, we compare the path probabilities of forward and backward-in-time evolution to develop an arrow of time statistic associated with measurement dynamics. We compare the statistics of individual trajectories to ensemble properties showing that the measurement dynamics obeys both detailed and integral fluctuation theorems, thus establishing the consistency between microscopic and macroscopic measurement dynamics.
Collapse
Affiliation(s)
- P M Harrington
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - D Tan
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - M Naghiloo
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - K W Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
- Institute for Materials Science and Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|
24
|
Seah S, Nimmrichter S, Scarani V. Nonequilibrium dynamics with finite-time repeated interactions. Phys Rev E 2019; 99:042103. [PMID: 31108604 DOI: 10.1103/physreve.99.042103] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 11/07/2022]
Abstract
We study quantum dynamics in the framework of repeated interactions between a system and a stream of identical probes. We present a coarse-grained master equation that captures the system's dynamics in the natural regime where interactions with different probes do not overlap, but it is otherwise valid for arbitrary values of the interaction strength and mean interaction time. We then apply it to some specific examples. For probes prepared in Gibbs states, such channels have been used to describe thermalization: while this is the case for many choices of parameters, for others one finds out-of-equilibrium states including inverted Gibbs and maximally mixed states. Gapless probes can be interpreted as performing an indirect measurement, and we study the energy transfer associated with this measurement.
Collapse
Affiliation(s)
- Stella Seah
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Stefan Nimmrichter
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Valerio Scarani
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore.,Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| |
Collapse
|
25
|
Elouard C, Jordan AN. Efficient Quantum Measurement Engines. PHYSICAL REVIEW LETTERS 2018; 120:260601. [PMID: 30004734 DOI: 10.1103/physrevlett.120.260601] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/28/2018] [Indexed: 06/08/2023]
Abstract
We propose quantum engines powered entirely by a position-resolving measurement performed on a quantum particle. These engines produce work by moving the quantum particle against a force. Unlike classical information-driven engines (e.g., Maxwell's demon), the energy is not extracted from a thermal hot source but directly from the observation process via a partial wave-function collapse of the particle. We present results for the work done and the efficiency for different values of the engine parameters. Feedback is required for optimal performance. We find that unit efficiency can be approached when one measurement outcome prepares the initial state of the next engine cycle, while the other outcomes leave the original state nearly unchanged.
Collapse
Affiliation(s)
- Cyril Elouard
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Andrew N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
| |
Collapse
|