1
|
Wang Z, Ren J. Thermodynamic Geometry of Nonequilibrium Fluctuations in Cyclically Driven Transport. PHYSICAL REVIEW LETTERS 2024; 132:207101. [PMID: 38829089 DOI: 10.1103/physrevlett.132.207101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/06/2023] [Accepted: 04/11/2024] [Indexed: 06/05/2024]
Abstract
Nonequilibrium thermal machines under cyclic driving generally outperform steady-state counterparts. However, there is still lack of coherent understanding of versatile transport and fluctuation features under time modulations. Here, we formulate a theoretical framework of thermodynamic geometry in terms of full counting statistics of nonequilibrium driven transports. We find that, besides the conventional dynamic and adiabatic geometric curvature contributions, the generating function is also divided into an additional nonadiabatic contribution, manifested as the metric term of full counting statistics. This nonadiabatic metric generalizes recent results of thermodynamic geometry in near-equilibrium entropy production to far-from-equilibrium fluctuations of general currents. Furthermore, the framework proves geometric thermodynamic uncertainty relations of near-adiabatic thermal devices, constraining fluctuations in terms of statistical metric quantities and thermodynamic length. We exemplify the theory in experimentally accessible driving-induced quantum chiral transport and Brownian heat pump.
Collapse
Affiliation(s)
- Zi Wang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jie Ren
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Zhang F, Quan HT. Full counting statistics of the particle currents through a Kitaev chain and the exchange fluctuation theorem. Phys Rev E 2021; 103:032143. [PMID: 33862821 DOI: 10.1103/physreve.103.032143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/09/2021] [Indexed: 11/07/2022]
Abstract
Exchange fluctuation theorems (XFTs) describe a fundamental symmetry relation for particle and energy exchange between several systems. Here we study the XFTs of a Kitaev chain connected to two reservoirs at the same temperature but different bias. By varying the parameters in the Kitaev chain model, we calculate analytically the full counting statistics of the transport current and formulate the corresponding XFTs for multiple current components. We also demonstrate the XFTs with numerical results. We find that due to the presence of the U(1) symmetry breaking terms in the Hamiltonian of the Kitaev chain, various forms of the XFTs emerge, and they can be interpreted in terms of various well-known transport processes.
Collapse
Affiliation(s)
- Fan Zhang
- School of Physics, Peking University, Beijing 100871, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Hino Y, Hayakawa H. Fluctuation relations for adiabatic pumping. Phys Rev E 2020; 102:012115. [PMID: 32795070 DOI: 10.1103/physreve.102.012115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
We derive an extended fluctuation relation for an open system coupled with two reservoirs under adiabatic one-cycle modulation. We confirm that the geometrical phase caused by the Berry-Sinitsyn-Nemenman curvature in the parameter space generates non-Gaussian fluctuations. This non-Gaussianity is enhanced for the instantaneous fluctuation relation when the bias between the two reservoirs disappears.
Collapse
Affiliation(s)
- Yuki Hino
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Funo K, Lambert N, Nori F, Flindt C. Shortcuts to Adiabatic Pumping in Classical Stochastic Systems. PHYSICAL REVIEW LETTERS 2020; 124:150603. [PMID: 32357046 DOI: 10.1103/physrevlett.124.150603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Adiabatic pumping is characterized by a geometric contribution to the pumped charge, which can be nonzero even in the absence of a bias. However, as the driving speed is increased, nonadiabatic excitations gradually reduce the pumped charge, thereby limiting the maximal applicable driving frequencies. To circumvent this problem, we here extend the concept of shortcuts to adiabaticity to construct a control protocol which enables geometric pumping well beyond the adiabatic regime. Our protocol allows for an increase, by more than an order of magnitude, in the driving frequencies, and the method is also robust against moderate fluctuations of the control field. We provide a geometric interpretation of the control protocol and analyze the thermodynamic cost of implementing it. Our findings can be realized using current technology and potentially enable fast pumping of charge or heat in quantum dots, as well as in other stochastic systems from physics, chemistry, and biology.
Collapse
Affiliation(s)
- Ken Funo
- Theoretical Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Neill Lambert
- Theoretical Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Franco Nori
- Theoretical Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Christian Flindt
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
5
|
Takahashi K, Fujii K, Hino Y, Hayakawa H. Nonadiabatic Control of Geometric Pumping. PHYSICAL REVIEW LETTERS 2020; 124:150602. [PMID: 32357045 DOI: 10.1103/physrevlett.124.150602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
We study nonadiabatic effects of geometric pumping. With arbitrary choices of periodic control parameters, we go beyond the adiabatic approximation to obtain the exact pumping current. We find that a geometrical interpretation for the nontrivial part of the current is possible even in the nonadiabatic regime. The exact result allows us to find a smooth connection between the adiabatic Berry phase theory at low frequencies and the Floquet theory at high frequencies. We also study how to control the geometric current. Using the method of shortcuts to adiabaticity with the aid of an assisting field, we illustrate that it enhances the current.
Collapse
Affiliation(s)
- Kazutaka Takahashi
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
| | - Keisuke Fujii
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan and iTHEMS Program, RIKEN, Saitama 351-0198, Japan
| | - Yuki Hino
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Giri SK, Goswami HP. Nonequilibrium fluctuations of a driven quantum heat engine via machine learning. Phys Rev E 2019; 99:022104. [PMID: 30934252 DOI: 10.1103/physreve.99.022104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 11/07/2022]
Abstract
We propose a machine-learning approach based on artificial neural network to efficiently obtain new insights on the role of geometric contributions to the nonequilibrium fluctuations of an adiabatically temperature-driven quantum heat engine coupled to a cavity. Using the artificial neural network we have explored the interplay between bunched and antibunched photon exchange statistics for different engine parameters. We report that beyond a pivotal cavity temperature, the Fano factor oscillates between giant and low values as a function of phase difference between the driving protocols. We further observe that the standard thermodynamic uncertainty relation is not valid when there are finite geometric contributions to the fluctuations but holds true for zero phase difference even in the presence of coherences.
Collapse
Affiliation(s)
- Sajal Kumar Giri
- Finite Systems Division, Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Himangshu Prabal Goswami
- Finite Systems Division, Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany.,Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
7
|
Information Thermodynamics Derives the Entropy Current of Cell Signal Transduction as a Model of a Binary Coding System. ENTROPY 2018; 20:e20020145. [PMID: 33265236 PMCID: PMC7512639 DOI: 10.3390/e20020145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/26/2022]
Abstract
The analysis of cellular signaling cascades based on information thermodynamics has recently developed considerably. A signaling cascade may be considered a binary code system consisting of two types of signaling molecules that carry biological information, phosphorylated active, and non-phosphorylated inactive forms. This study aims to evaluate the signal transduction step in cascades from the viewpoint of changes in mixing entropy. An increase in active forms may induce biological signal transduction through a mixing entropy change, which induces a chemical potential current in the signaling cascade. We applied the fluctuation theorem to calculate the chemical potential current and found that the average entropy production current is independent of the step in the whole cascade. As a result, the entropy current carrying signal transduction is defined by the entropy current mobility.
Collapse
|
8
|
Giri SK, Goswami HP. Geometric phaselike effects in a quantum heat engine. Phys Rev E 2017; 96:052129. [PMID: 29347686 DOI: 10.1103/physreve.96.052129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 06/07/2023]
Abstract
By periodically driving the temperature of reservoirs in a quantum heat engine, geometric or Pancharatnam-Berry phaselike (PBp) effects in the thermodynamics can be observed. The PBp can be identified from a generating function (GF) method within an adiabatic quantum Markovian master equation formalism. The GF is shown not to lead to a standard open quantum system's fluctuation theorem in the presence of phase-different modulations with an inapplicability in the use of large deviation theory. Effect of quantum coherences in optimizing the flux is nullified due to PBp contributions. The linear coefficient, 1/2, which is universal in the expansion of the efficiency at maximum power in terms of Carnot efficiency no longer holds true in the presence of PBp effects.
Collapse
Affiliation(s)
- Sajal Kumar Giri
- Finite Systems Division, Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
| | - Himangshu Prabal Goswami
- Finite Systems Division, Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
| |
Collapse
|