1
|
Smirnov DA. Transfer entropies within dynamical effects framework. Phys Rev E 2020; 102:062139. [PMID: 33466034 DOI: 10.1103/physreve.102.062139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
Transfer entropy (TE) is widely used in time-series analysis to detect causal couplings between temporally evolving objects. As a coupling strength quantifier, the TE alone often seems insufficient, raising the question of its further interpretations. Here the TE is related to dynamical causal effects (DCEs) which quantify long-term responses of a coupling recipient to variations in a coupling source or in a coupling itself: Detailed relationships are established for a paradigmatic stochastic dynamical system of bidirectionally coupled linear overdamped oscillators, their practical applications and possible extensions are discussed. It is shown that two widely used versions of the TE (original and infinite-history) can become qualitatively distinct, diverging to different long-term DCEs.
Collapse
Affiliation(s)
- Dmitry A Smirnov
- Saratov Branch, Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, 38 Zelyonaya St., Saratov 410019, Russia
| |
Collapse
|
2
|
Leguia MG, Martínez CGB, Malvestio I, Campo AT, Rocamora R, Levnajić Z, Andrzejak RG. Inferring directed networks using a rank-based connectivity measure. Phys Rev E 2019; 99:012319. [PMID: 30780311 DOI: 10.1103/physreve.99.012319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Indexed: 11/07/2022]
Abstract
Inferring the topology of a network using the knowledge of the signals of each of the interacting units is key to understanding real-world systems. One way to address this problem is using data-driven methods like cross-correlation or mutual information. However, these measures lack the ability to distinguish the direction of coupling. Here, we use a rank-based nonlinear interdependence measure originally developed for pairs of signals. This measure not only allows one to measure the strength but also the direction of the coupling. Our results for a system of coupled Lorenz dynamics show that we are able to consistently infer the underlying network for a subrange of the coupling strength and link density. Furthermore, we report that the addition of dynamical noise can benefit the reconstruction. Finally, we show an application to multichannel electroencephalographic recordings from an epilepsy patient.
Collapse
Affiliation(s)
- Marc G Leguia
- Faculty of Information Studies, 8000 Novo Mesto, Slovenia.,Department of Communication and Information Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| | - Cristina G B Martínez
- Department of Communication and Information Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| | - Irene Malvestio
- Department of Communication and Information Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain.,Department of Physics and Astronomy, University of Florence, 50119 Sesto Fiorentino, Italy.,Institute for Complex Systems, CNR, 50119 Sesto Fiorentino, Italy
| | - Adrià Tauste Campo
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain.,Epilepsy Unit, Department of Neurology, IMIM Hospital del Mar, Universitat Pompeu Fabra, 08003 Barcelona, Spain.,Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Rodrigo Rocamora
- Epilepsy Unit, Department of Neurology, IMIM Hospital del Mar, Universitat Pompeu Fabra, 08003 Barcelona, Spain.,Faculty of Health and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Zoran Levnajić
- Faculty of Information Studies, 8000 Novo Mesto, Slovenia.,Institute Jozef Stefan, 1000 Ljubljana, Slovenia
| | - Ralph G Andrzejak
- Department of Communication and Information Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Asllani M, Carletti T, Di Patti F, Fanelli D, Piazza F. Hopping in the Crowd to Unveil Network Topology. PHYSICAL REVIEW LETTERS 2018; 120:158301. [PMID: 29756854 DOI: 10.1103/physrevlett.120.158301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 05/14/2023]
Abstract
We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes' degree and saturates to a constant value for sufficiently large connectivities, at variance with standard diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers all the necessary information by repeating a limited number of independent measurements of the asymptotic density at a single node, which can be chosen randomly. The technique is successfully tested against both synthetic and real data and is also shown to estimate with great accuracy the total number of nodes.
Collapse
Affiliation(s)
- Malbor Asllani
- naXys, Namur Institute for Complex Systems, University of Namur, rempart de la Vierge 8, B 5000 Namur, Belgium
| | - Timoteo Carletti
- naXys, Namur Institute for Complex Systems, University of Namur, rempart de la Vierge 8, B 5000 Namur, Belgium
| | - Francesca Di Patti
- Dipartimento di Fisica e Astronomia, Università di Firenze, INFN and CSDC, Via Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Duccio Fanelli
- Dipartimento di Fisica e Astronomia, Università di Firenze, INFN and CSDC, Via Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Francesco Piazza
- University of Orléans and Centre de Biophysique Moléculaire (CBM), CNRS UPR 4301, Rue C. Sadron, 45071 Orléans, France
| |
Collapse
|