1
|
Ziaja B, Bekx JJ, Masek M, Medvedev N, Lipp V, Saxena V, Stransky M. Application of Boltzmann kinetic equations to model X-ray-created warm dense matter and plasma. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220216. [PMID: 37393933 PMCID: PMC10876064 DOI: 10.1098/rsta.2022.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/28/2023] [Indexed: 07/04/2023]
Abstract
In this review, we describe the application of Boltzmann kinetic equations for modelling warm dense matter and plasma formed after irradiation of solid materials with intense femtosecond X-ray pulses. Classical Boltzmann kinetic equations are derived from the reduced N-particle Liouville equations. They include only single-particle densities of ions and free electrons present in the sample. The first version of the Boltzmann kinetic equation solver was completed in 2006. It could model non-equilibrium evolution of X-ray-irradiated finite-size atomic systems. In 2016, the code was adapted to study plasma created from X-ray-irradiated materials. Additional extension of the code was then also performed, enabling simulations in the hard X-ray irradiation regime. In order to avoid treatment of a very high number of active atomic configurations involved in the excitation and relaxation of X-ray-irradiated materials, an approach called 'predominant excitation and relaxation path' (PERP) was introduced. It limited the number of active atomic configurations by following the sample evolution only along most PERPs. The performance of the Boltzmann code is illustrated in the examples of X-ray-heated solid carbon and gold. Actual model limitations and further model developments are discussed. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Beata Ziaja
- Center for Free-Electron Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - John Jasper Bekx
- Center for Free-Electron Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Martin Masek
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2,182 21 Prague 8, Czech Republic
| | - Nikita Medvedev
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2,182 21 Prague 8, Czech Republic
- Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague 8, Czech Republic
| | - Vladimir Lipp
- Center for Free-Electron Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Vikrant Saxena
- Center for Free-Electron Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Indian Institute of Technology Delhi,New Delhi 110016, India
| | - Michal Stransky
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2,182 21 Prague 8, Czech Republic
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
2
|
Jin R, Jurek Z, Santra R, Son SK. Plasma environmental effects in the atomic structure for simulating x-ray free-electron-laser-heated solid-density matter. Phys Rev E 2022; 106:015206. [PMID: 35974549 DOI: 10.1103/physreve.106.015206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
High energy density (HED) matter exists extensively in the Universe, and it can be created with extreme conditions in laboratory facilities such as x-ray free-electron lasers (XFEL). In HED matter, the electronic structure of individual atomic ions is influenced by a dense plasma environment, and one of the most significant phenomena is the ionization potential depression (IPD). Incorporation of the IPD effects is of great importance in accurate modeling of dense plasmas. All theoretical treatments of IPD so far have been based on the assumption of local thermodynamic equilibrium, but its validity is questionable in ultrafast formation dynamics of dense plasmas, particularly when interacting with intense XFEL pulses. A treatment of transient IPD, based on an electronic-structure calculation of an atom in the presence of a plasma environment described by classical particles, has recently been proposed [Phys. Rev. E 103, 023203 (2021)2470-004510.1103/PhysRevE.103.023203], but its application to and impact on plasma dynamics simulations have not been investigated yet. In this work, we extend XMDYN, a hybrid quantum-classical approach combining Monte Carlo and molecular dynamics, by incorporating the proposed IPD treatment into plasma dynamics simulations. We demonstrate the importance of the IPD effects in theoretical modeling of aluminum dense plasmas by comparing two XMDYN simulations: one with electronic-structure calculations of isolated atoms (without IPD) and the other with those of atoms embedded in a plasma (with IPD). At equilibrium, the mean charge obtained in the plasma simulation with IPD is in good agreement with the full quantum-mechanical average-atom model. The present approach promises to be a reliable tool to simulate the creation and nonequilibrium evolution of dense plasmas induced by ultraintense and ultrashort XFEL pulses.
Collapse
Affiliation(s)
- Rui Jin
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Zoltan Jurek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestrasse 9-11, 22607 Hamburg, Germany
| | - Sang-Kil Son
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
3
|
Jin R, Abdullah MM, Jurek Z, Santra R, Son SK. Transient ionization potential depression in nonthermal dense plasmas at high x-ray intensity. Phys Rev E 2021; 103:023203. [PMID: 33735970 DOI: 10.1103/physreve.103.023203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/22/2021] [Indexed: 11/07/2022]
Abstract
The advent of x-ray free-electron lasers (XFELs), which provide intense ultrashort x-ray pulses, has brought a new way of creating and analyzing hot and warm dense plasmas in the laboratory. Because of the ultrashort pulse duration, the XFEL-produced plasma will be out of equilibrium at the beginning, and even the electronic subsystem may not reach thermal equilibrium while interacting with a femtosecond timescale pulse. In the dense plasma, the ionization potential depression (IPD) induced by the plasma environment plays a crucial role for understanding and modeling microscopic dynamical processes. However, all theoretical approaches for IPD have been based on local thermal equilibrium (LTE), and it has been controversial to use LTE IPD models for the nonthermal situation. In this work, we propose a non-LTE (NLTE) approach to calculate the IPD effect by combining a quantum-mechanical electronic-structure calculation and a classical molecular dynamics simulation. This hybrid approach enables us to investigate the time evolution of ionization potentials and IPDs during and after the interaction with XFEL pulses, without the limitation of the LTE assumption. In our NLTE approach, the transient IPD values are presented as distributions evolving with time, which cannot be captured by conventional LTE-based models. The time-integrated ionization potential values are in good agreement with benchmark experimental data on solid-density aluminum plasma and other theoretical predictions based on LTE. The present work is promising to provide critical insights into nonequilibrium dynamics of dense plasma formation and thermalization induced by XFEL pulses.
Collapse
Affiliation(s)
- Rui Jin
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,Department of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | | | - Zoltan Jurek
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.,Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Sang-Kil Son
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Nass K, Gorel A, Abdullah MM, V Martin A, Kloos M, Marinelli A, Aquila A, Barends TRM, Decker FJ, Bruce Doak R, Foucar L, Hartmann E, Hilpert M, Hunter MS, Jurek Z, Koglin JE, Kozlov A, Lutman AA, Kovacs GN, Roome CM, Shoeman RL, Santra R, Quiney HM, Ziaja B, Boutet S, Schlichting I. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat Commun 2020; 11:1814. [PMID: 32286284 PMCID: PMC7156470 DOI: 10.1038/s41467-020-15610-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
X-ray free-electron lasers (XFELs) enable crystallographic structure determination beyond the limitations imposed upon synchrotron measurements by radiation damage. The need for very short XFEL pulses is relieved through gating of Bragg diffraction by loss of crystalline order as damage progresses, but not if ionization events are spatially non-uniform due to underlying elemental distributions, as in biological samples. Indeed, correlated movements of iron and sulfur ions were observed in XFEL-irradiated ferredoxin microcrystals using unusually long pulses of 80 fs. Here, we report a femtosecond time-resolved X-ray pump/X-ray probe experiment on protein nanocrystals. We observe changes in the protein backbone and aromatic residues as well as disulfide bridges. Simulations show that the latter’s correlated structural dynamics are much slower than expected for the predicted high atomic charge states due to significant impact of ion caging and plasma electron screening. This indicates that dense-environment effects can strongly affect local radiation damage-induced structural dynamics. The local X-ray-induced dynamics that occur in protein crystals during serial femtosecond crystallography (SFX) measurements at XFELs are not well understood. Here the authors performed a time-resolved X-ray pump X-ray probe SFX experiment, and they observe distinct structural changes in the disulfide bridges and peptide backbone of proteins; complementing theoretical approaches allow them to further characterize the details of the X-ray induced ionization and local structural dynamics.
Collapse
Affiliation(s)
- Karol Nass
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Alexander Gorel
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Malik M Abdullah
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Andrew V Martin
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia
| | - Marco Kloos
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | | | - Andrew Aquila
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Thomas R M Barends
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | | | - R Bruce Doak
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Elisabeth Hartmann
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Mark S Hunter
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jason E Koglin
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Alexander Kozlov
- ARC Centre of Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alberto A Lutman
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christopher M Roome
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany.,Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355, Hamburg, Germany
| | - Harry M Quiney
- ARC Centre of Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Beata Ziaja
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany. .,Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland.
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ilme Schlichting
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Abdullah MM, Son SK, Jurek Z, Santra R. Towards the theoretical limitations of X-ray nanocrystallography at high intensity: the validity of the effective-form-factor description. IUCRJ 2018; 5:699-705. [PMID: 30443354 PMCID: PMC6211521 DOI: 10.1107/s2052252518011442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
X-ray free-electron lasers (XFELs) broaden horizons in X-ray crystallography. Facilitated by the unprecedented high intensity and ultrashort duration of the XFEL pulses, they enable us to investigate the structure and dynamics of macromolecules with nano-sized crystals. A limitation is the extent of radiation damage in the nanocrystal target. A large degree of ionization initiated by the incident high-intensity XFEL pulse alters the scattering properties of the atoms leading to perturbed measured patterns. In this article, the effective-form-factor approximation applied to capture this phenomenon is discussed. Additionally, the importance of temporal configurational fluctuations at high intensities, shaping these quantities besides the average electron loss, is shown. An analysis regarding the applicability of the approach to targets consisting of several atomic species is made, both theoretically and via realistic radiation-damage simulations. It is concluded that, up to intensities relevant for XFEL-based nanocrystallography, the effective-form-factor description is sufficiently accurate. This work justifies treating measured scattering patterns using conventional structure-reconstruction algorithms.
Collapse
Affiliation(s)
- Malik Muhammad Abdullah
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Sang-Kil Son
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| |
Collapse
|