1
|
Huang R, Man ZX, Li L, Xia YJ. Impact of the sequence of system-environment interactions on the functionality and efficiency of quantum thermal machines. Sci Rep 2025; 15:11151. [PMID: 40169666 PMCID: PMC11961622 DOI: 10.1038/s41598-025-95330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
In this work, we investigate effects of the sequence of system-environment interactions on the functionality and performance of quantum thermal machines (QTMs). The working substance of our setup consists of two subsystems, each independently coupled to its local thermal reservoir and further interconnected with a common reservoir in a cascaded manner. We demonstrate the impact of the sequential interactions between the subsystems and the common reservoir by exchanging the temperatures of the two local reservoirs. Our findings reveal that, when the two subsystems are in resonance, such an exchange alters the efficiency of QTMs without changing their functional types. Conversely, when the two subsystems are detuned, this exchange not only changes the efficiency but also the types of QTMs. Our results indicate that the manners of system-reservoir interactions offer significant potential for designing QTMs with tailored functionalities and enhanced performance.
Collapse
Affiliation(s)
- Rui Huang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Zhong-Xiao Man
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China.
| | - Lu Li
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yun-Jie Xia
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
2
|
Xiao Y, Li K, He J, Wang J. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential. ENTROPY (BASEL, SWITZERLAND) 2023; 25:484. [PMID: 36981372 PMCID: PMC10048115 DOI: 10.3390/e25030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
We present a quantum Otto engine model alternatively driven by a hot and a cold heat reservoir and consisting of two isochoric and two adiabatic strokes, where the adiabatic expansion or compression is realized by adiabatically changing the shape of the potential. Here, we show that such an adiabatic deformation may alter operation mode and enhance machine performance by increasing output work and efficiency, even with the advantage of decreasing work fluctuations. If the heat engine in the sudden limit operates under maximal power by optimizing the control parameter, the efficiency shows certain universal behavior, η*=ηC/2+ηC2/8+O(ηC3), where ηC=1-βhr/βcr is the Carnot efficiency, with βhr(βcr) being the inverse temperature of the hot (cold) reservoir. However, such efficiency under maximal power can be produced by our machine model in the regimes where the machine without adiabatic deformation can only operate as a heater or a refrigerator.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Kai Li
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Li L, Man ZX, Xia YJ. Steady-State Thermodynamics of a Cascaded Collision Model. ENTROPY (BASEL, SWITZERLAND) 2022; 24:644. [PMID: 35626529 PMCID: PMC9140471 DOI: 10.3390/e24050644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023]
Abstract
We study the steady-state thermodynamics of a cascaded collision model where two subsystems S1 and S2 collide successively with an environment R in the cascaded fashion. We first formulate general expressions of thermodynamics quantities and identify the nonlocal forms of work and heat that result from cascaded interactions of the system with the common environment. Focusing on a concrete system of two qubits, we then show that, to be able to unidirectionally influence the thermodynamics of S2, the former interaction of S1-R should not be energy conserving. We finally demonstrate that the steady-state coherence generated in the cascaded model is a kind of useful resource in extracting work, quantified by ergotropy, from the system. Our results provide a comprehensive understanding on the thermodynamics of the cascaded model and a possible way to achieve the unidirectional control on the thermodynamics process in the steady-state regime.
Collapse
Affiliation(s)
| | - Zhong-Xiao Man
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China; (L.L.); (Y.-J.X.)
| | | |
Collapse
|
4
|
Aguilera MA, Peña FJ, Negrete OA, Vargas P. Otto Engine for the q-State Clock Model. ENTROPY 2022; 24:e24020268. [PMID: 35205562 PMCID: PMC8871503 DOI: 10.3390/e24020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/03/2022]
Abstract
This present work explores the performance of a thermal–magnetic engine of Otto type, considering as a working substance an effective interacting spin model corresponding to the q− state clock model. We obtain all the thermodynamic quantities for the q = 2, 4, 6, and 8 cases in a small lattice size (3×3 with free boundary conditions) by using the exact partition function calculated from the energies of all the accessible microstates of the system. The extension to bigger lattices was performed using the mean-field approximation. Our results indicate that the total work extraction of the cycle is highest for the q=4 case, while the performance for the Ising model (q=2) is the lowest of all cases studied. These results are strongly linked with the phase diagram of the working substance and the location of the cycle in the different magnetic phases present, where we find that the transition from a ferromagnetic to a paramagnetic phase extracts more work than one of the Berezinskii–Kosterlitz–Thouless to paramagnetic type. Additionally, as the size of the lattice increases, the extraction work is lower than smaller lattices for all values of q presented in this study.
Collapse
Affiliation(s)
- Michel Angelo Aguilera
- Department of Physics, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.A.A.); (F.J.P.); (O.A.N.)
| | - Francisco José Peña
- Department of Physics, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.A.A.); (F.J.P.); (O.A.N.)
| | - Oscar Andrés Negrete
- Department of Physics, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.A.A.); (F.J.P.); (O.A.N.)
- Center for the Development of Nanoscience and Nanotechnology, Santiago 8320000, Chile
| | - Patricio Vargas
- Department of Physics, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.A.A.); (F.J.P.); (O.A.N.)
- Center for the Development of Nanoscience and Nanotechnology, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
5
|
Anka MF, de Oliveira TR, Jonathan D. Measurement-based quantum heat engine in a multilevel system. Phys Rev E 2021; 104:054128. [PMID: 34942804 DOI: 10.1103/physreve.104.054128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022]
Abstract
We compare quantum Otto engines based on two different cycle models: a two-bath model, with a standard heat source and sink, and a measurement-based protocol, where the role of heat source is played by a quantum measurement. We furthermore study these cycles using two different "working substances": a single qutrit (spin-1 particle) or a pair of qubits (spin-1/2 particles) interacting via the XXZ Heisenberg interaction. Although both cycle models have the same efficiency when applied on a single-qubit working substance, we find that both can reach higher efficiencies using these more complex working substances by exploiting the existence of "idle" levels, i.e., levels that do not shift while the spins are subjected to a variable magnetic field. Furthermore, with an appropriate choice of measurement, the measurement-based protocol becomes more efficient than the two-bath model.
Collapse
Affiliation(s)
- Maron F Anka
- Instituto de Física Universidade Federal Fluminense - Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, Rio de Janeiro, Brazil
| | - Thiago R de Oliveira
- Instituto de Física Universidade Federal Fluminense - Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, Rio de Janeiro, Brazil
| | - Daniel Jonathan
- Instituto de Física Universidade Federal Fluminense - Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Johal RS, Mehta V. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1149. [PMID: 34573774 PMCID: PMC8468726 DOI: 10.3390/e23091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
Quantum thermal machines make use of non-classical thermodynamic resources, one of which include interactions between elements of the quantum working medium. In this paper, we examine the performance of a quasi-static quantum Otto engine based on two spins of arbitrary magnitudes subject to an external magnetic field and coupled via an isotropic Heisenberg exchange interaction. It has been shown earlier that the said interaction provides an enhancement of cycle efficiency, with an upper bound that is tighter than the Carnot efficiency. However, the necessary conditions governing engine performance and the relevant upper bound for efficiency are unknown for the general case of arbitrary spin magnitudes. By analyzing extreme case scenarios, we formulate heuristics to infer the necessary conditions for an engine with uncoupled as well as coupled spin model. These conditions lead us to a connection between performance of quantum heat engines and the notion of majorization. Furthermore, the study of complete Otto cycles inherent in the average cycle also yields interesting insights into the average performance.
Collapse
Affiliation(s)
- Ramandeep S. Johal
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India;
| | | |
Collapse
|
7
|
Liu J, Segal D. Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators. Phys Rev E 2021; 103:032138. [PMID: 33862758 DOI: 10.1103/physreve.103.032138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic uncertainty relation, originally derived for classical Markov-jump processes, provides a tradeoff relation between precision and dissipation, deepening our understanding of the performance of quantum thermal machines. Here, we examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime. To achieve the current statistics, we perform a full counting statistics simulation of the Redfield quantum master equation. We focus on steady-state quantum absorption refrigerators where nonzero coherence between eigenstates can either suppress or enhance the cooling power, compared with the incoherent limit. In either scenario, we find enhanced relative noise of the cooling power (standard deviation of the power over the mean) in the presence of system coherence, thereby corroborating the thermodynamic uncertainty relation. Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Physics, 60 Saint George Street, University of Toronto, Toronto, Ontario, Canada M5S 1A7
| |
Collapse
|
8
|
Irreversible work and Maxwell demon in terms of quantum thermodynamic force. Sci Rep 2021; 11:2301. [PMID: 33504852 PMCID: PMC7840741 DOI: 10.1038/s41598-021-81737-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
The second law of classical equilibrium thermodynamics, based on the positivity of entropy production, asserts that any process occurs only in a direction that some information may be lost (flow out of the system) due to the irreversibility inside the system. However, any thermodynamic system can exhibit fluctuations in which negative entropy production may be observed. In particular, in stochastic quantum processes due to quantum correlations and also memory effects we may see the reversal energy flow (heat flow from the cold system to the hot system) and the backflow of information into the system that leads to the negativity of the entropy production which is an apparent violation of the Second Law. In order to resolve this apparent violation, we will try to properly extend the Second Law to quantum processes by incorporating information explicitly into the Second Law. We will also provide a thermodynamic operational meaning for the flow and backflow of information. Finally, it is shown that negative and positive entropy production can be described by a quantum thermodynamic force.
Collapse
|
9
|
Peña FJ, Negrete O, Cortés N, Vargas P. Otto Engine: Classical and Quantum Approach. ENTROPY 2020; 22:e22070755. [PMID: 33286527 PMCID: PMC7517304 DOI: 10.3390/e22070755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
In this paper, we analyze the total work extracted and the efficiency of the magnetic Otto cycle in its classic and quantum versions. As a general result, we found that the work and efficiency of the classical engine is always greater than or equal to its quantum counterpart, independent of the working substance. In the classical case, this is due to the fact that the working substance is always in thermodynamic equilibrium at each point of the cycle, maximizing the energy extracted in the adiabatic paths. We apply this analysis to the case of a two-level system, finding that the work and efficiency in both the Otto’s quantum and classical cycles are identical, regardless of the working substance, and we obtain similar results for a multilevel system where a linear relationship between the spectrum of energies of the working substance and the external magnetic field is fulfilled. Finally, we show an example of a three-level system in which we compare two zones in the entropy diagram as a function of temperature and magnetic field to find which is the most efficient region when performing a thermodynamic cycle. This work provides a practical way to look for temperature and magnetic field zones in the entropy diagram that can maximize the power extracted from an Otto magnetic engine.
Collapse
Affiliation(s)
- Francisco J. Peña
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso 2390123, Chile; (O.N.); (N.C.); (P.V.)
- Correspondence: or
| | - Oscar Negrete
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso 2390123, Chile; (O.N.); (N.C.); (P.V.)
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, Santiago 8320000, Chile
| | - Natalia Cortés
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso 2390123, Chile; (O.N.); (N.C.); (P.V.)
| | - Patricio Vargas
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso 2390123, Chile; (O.N.); (N.C.); (P.V.)
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, Santiago 8320000, Chile
| |
Collapse
|
10
|
Peña FJ, Zambrano D, Negrete O, De Chiara G, Orellana PA, Vargas P. Quasistatic and quantum-adiabatic Otto engine for a two-dimensional material: The case of a graphene quantum dot. Phys Rev E 2020; 101:012116. [PMID: 32069598 DOI: 10.1103/physreve.101.012116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 11/07/2022]
Abstract
In this work, we study the performance of a quasistatic and quantum-adiabatic magnetic Otto cycles with a working substance composed of a single graphene quantum dot modeled by the continuum approach with the use of the zigzag boundary condition. Modulating an external or perpendicular magnetic field, in the quasistatic approach, we found a constant behavior in the total work extracted that is not present in the quantum-adiabatic formulation. We find that, in the quasistatic approach, the engine yielded a greater performance in terms of total work extracted and efficiency as compared with its quantum-adiabatic counterpart. In the quasistatic case, this is due to the working substance being in thermal equilibrium at each point of the cycle, maximizing the energy extracted in the adiabatic strokes.
Collapse
Affiliation(s)
- Francisco J Peña
- Departamento de Física, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
| | - D Zambrano
- Departamento de Física, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
| | - O Negrete
- Departamento de Física, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnología, 8320000 Santiago, Chile
| | - Gabriele De Chiara
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - P A Orellana
- Departamento de Física, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
| | - P Vargas
- Departamento de Física, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnología, 8320000 Santiago, Chile
| |
Collapse
|
11
|
Singh V, Johal RS. Three-level laser heat engine at optimal performance with ecological function. Phys Rev E 2019; 100:012138. [PMID: 31499856 DOI: 10.1103/physreve.100.012138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/07/2022]
Abstract
Although classical and quantum heat engines work on entirely different fundamental principles, there is an underlying similarity. For instance, the form of efficiency at optimal performance may be similar for both types of engines. In this work, we study a three-level laser quantum heat engine operating at maximum ecological function (EF) which represents a compromise between the power output and the loss of power due to entropy production. We present numerical as well as analytic results for the global and local optimization of our laser engine in different operational regimes. Particularly, we observe that in low-temperature regimes, the three-level laser heat engine can be mapped to Feynman's ratchet and pawl model, a steady-state classical heat engine. Then we derive analytic expressions for efficiency under the assumptions of strong matter-field coupling and high bath temperatures. Upper and lower bounds on the efficiency exist in case of extreme asymmetric dissipation when the ratio of system-bath coupling constants at the hot and the cold contacts respectively approaches zero or infinity. These bounds have been established previously for various classical models of Carnot-like engines. Further, for weak (or intermediate) matter-field coupling in the high-temperature limit, we derive some new bounds on the efficiency of the engine. We conclude that while the engine produces at least 75% of the power output as compared with the maximum power conditions, the fractional loss of power is appreciably low in case of the engine operating at maximum EF, thus making this objective function relevant from an environmental point of view.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Physical Sciences, and Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli P. O. 140306, Punjab, India
| | - Ramandeep S Johal
- Department of Physical Sciences, and Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli P. O. 140306, Punjab, India
| |
Collapse
|
12
|
Peña FJ, Negrete O, Alvarado Barrios G, Zambrano D, González A, Nunez AS, Orellana PA, Vargas P. Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach. ENTROPY (BASEL, SWITZERLAND) 2019; 21:E512. [PMID: 33267226 PMCID: PMC7515002 DOI: 10.3390/e21050512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 11/29/2022]
Abstract
We studied the performance of classical and quantum magnetic Otto cycle with a working substance composed of a single quantum dot using the Fock-Darwin model with the inclusion of the Zeeman interaction. Modulating an external/perpendicular magnetic field, in the classical approach, we found an oscillating behavior in the total work extracted that was not present in the quantum formulation.We found that, in the classical approach, the engine yielded a greater performance in terms of total work extracted and efficiency than when compared with the quantum approach. This is because, in the classical case, the working substance can be in thermal equilibrium at each point of the cycle, which maximizes the energy extracted in the adiabatic strokes.
Collapse
Affiliation(s)
- Francisco J. Peña
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
| | - Oscar Negrete
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
- Departamento de Física, Universidad de Santiago de Chile (USACH), Avenida Ecuador 3493, 9170022 Santiago, Chile
| | - Gabriel Alvarado Barrios
- Departamento de Física, Universidad de Santiago de Chile (USACH), Avenida Ecuador 3493, 9170022 Santiago, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, 8320000 Santiago, Chile
| | - David Zambrano
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
| | - Alejandro González
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
| | - Alvaro S. Nunez
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, 8320000 Santiago, Chile
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, 8370456 Santiago, Chile
| | - Pedro A. Orellana
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
| | - Patricio Vargas
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, 8320000 Santiago, Chile
| |
Collapse
|
13
|
Quantum coherence, many-body correlations, and non-thermal effects for autonomous thermal machines. Sci Rep 2019; 9:3191. [PMID: 30816164 PMCID: PMC6395647 DOI: 10.1038/s41598-019-39300-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/21/2019] [Indexed: 11/23/2022] Open
Abstract
One of the principal objectives of quantum thermodynamics is to explore quantum effects and their potential beneficial role in thermodynamic tasks like work extraction or refrigeration. So far, even though several papers have already shown that quantum effect could indeed bring quantum advantages, a global and deeper understanding is still lacking. Here, we extend previous models of autonomous machines to include quantum batteries made of arbitrary systems of discrete spectrum. We establish their actual efficiency, which allows us to derive an efficiency upper bound, called maximal achievable efficiency, shown to be always achievable, in contrast with previous upper bounds based only on the Second Law. Such maximal achievable efficiency can be expressed simply in term of the apparent temperature of the quantum battery. This important result appears to be a powerful tool to understand how quantum features like coherence but also many-body correlations and non-thermal population distribution can be harnessed to increase the efficiency of thermal machines.
Collapse
|
14
|
Magnetocaloric Effect in Non-Interactive Electron Systems: "The Landau Problem" and Its Extension to Quantum Dots. ENTROPY 2018; 20:e20080557. [PMID: 33265646 PMCID: PMC7513083 DOI: 10.3390/e20080557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022]
Abstract
In this work, we report the magnetocaloric effect (MCE) in two systems of non-interactive particles: the first corresponds to the Landau problem case and the second the case of an electron in a quantum dot subjected to a parabolic confinement potential. In the first scenario, we realize that the effect is totally different from what happens when the degeneracy of a single electron confined in a magnetic field is not taken into account. In particular, when the degeneracy of the system is negligible, the magnetocaloric effect cools the system, while in the other case, when the degeneracy is strong, the system heats up. For the second case, we study the competition between the characteristic frequency of the potential trap and the cyclotron frequency to find the optimal region that maximizes the ΔT of the magnetocaloric effect, and due to the strong degeneracy of this problem, the results are in coherence with those obtained for the Landau problem. Finally, we consider the case of a transition from a normal MCE to an inverse one and back to normal as a function of temperature. This is due to the competition between the diamagnetic and paramagnetic response when the electron spin in the formulation is included.
Collapse
|
15
|
Thomas G, Siddharth N, Banerjee S, Ghosh S. Thermodynamics of non-Markovian reservoirs and heat engines. Phys Rev E 2018; 97:062108. [PMID: 30011487 DOI: 10.1103/physreve.97.062108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 06/08/2023]
Abstract
We show that non-Markovian effects of the reservoirs can be used as a resource to extract work from an Otto cycle. The state transformation under non-Markovian dynamics is achieved via a two-step process, namely an isothermal process using a Markovian reservoir followed by an adiabatic process. From second law of thermodynamics, we show that the maximum amount of extractable work from the state prepared under the non-Markovian dynamics quantifies a lower bound of non-Markovianity. We illustrate our ideas with an explicit example of non-Markovian evolution.
Collapse
Affiliation(s)
- George Thomas
- Optics and Quantum Information Group, The Institute of Mathematical Sciences, HBNI, CIT Campus, Taramani, Chennai 600113, India
| | - Nana Siddharth
- The Institute of Mathematical Sciences, HBNI, CIT Campus, Taramani, Chennai 600113, India
| | | | - Sibasish Ghosh
- Optics and Quantum Information Group, The Institute of Mathematical Sciences, HBNI, CIT Campus, Taramani, Chennai 600113, India
| |
Collapse
|
16
|
|