1
|
Egas Santander D, Pokorny C, Ecker A, Lazovskis J, Santoro M, Smith JP, Hess K, Levi R, Reimann MW. Heterogeneous and higher-order cortical connectivity undergirds efficient, robust, and reliable neural codes. iScience 2025; 28:111585. [PMID: 39845419 PMCID: PMC11751574 DOI: 10.1016/j.isci.2024.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
We hypothesized that the heterogeneous architecture of biological neural networks provides a substrate to regulate the well-known tradeoff between robustness and efficiency, thereby allowing different subpopulations of the same network to optimize for different objectives. To distinguish between subpopulations, we developed a metric based on the mathematical theory of simplicial complexes that captures the complexity of their connectivity by contrasting its higher-order structure to a random control and confirmed its relevance in several openly available connectomes. Using a biologically detailed cortical model and an electron microscopic dataset, we showed that subpopulations with low simplicial complexity exhibit efficient activity. Conversely, subpopulations of high simplicial complexity play a supporting role in boosting the reliability of the network as a whole, softening the robustness-efficiency tradeoff. Crucially, we found that both types of subpopulations can and do coexist within a single connectome in biological neural networks, due to the heterogeneity of their connectivity.
Collapse
Affiliation(s)
- Daniela Egas Santander
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 6 Geneva, Switzerland
| | - Christoph Pokorny
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 6 Geneva, Switzerland
| | - András Ecker
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 6 Geneva, Switzerland
| | - Jānis Lazovskis
- Riga Business School, Riga Technical University, 1010 Riga, Latvia
| | - Matteo Santoro
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Jason P. Smith
- Department of Mathematics, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Kathryn Hess
- UPHESS, BMI, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ran Levi
- Department of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Michael W. Reimann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 6 Geneva, Switzerland
| |
Collapse
|
2
|
Ruggeri N, Battiston F, De Bacco C. Framework to generate hypergraphs with community structure. Phys Rev E 2024; 109:034309. [PMID: 38632750 DOI: 10.1103/physreve.109.034309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/11/2024] [Indexed: 04/19/2024]
Abstract
In recent years hypergraphs have emerged as a powerful tool to study systems with multibody interactions which cannot be trivially reduced to pairs. While highly structured methods to generate synthetic data have proved fundamental for the standardized evaluation of algorithms and the statistical study of real-world networked data, these are scarcely available in the context of hypergraphs. Here we propose a flexible and efficient framework for the generation of hypergraphs with many nodes and large hyperedges, which allows specifying general community structures and tune different local statistics. We illustrate how to use our model to sample synthetic data with desired features (assortative or disassortative communities, mixed or hard community assignments, etc.), analyze community detection algorithms, and generate hypergraphs structurally similar to real-world data. Overcoming previous limitations on the generation of synthetic hypergraphs, our work constitutes a substantial advancement in the statistical modeling of higher-order systems.
Collapse
Affiliation(s)
- Nicolò Ruggeri
- Max Planck Institute for Intelligent Systems, Cyber Valley, 72076 Tübingen, Germany
- Department of Computer Science, ETH, 8004 Zürich, Switzerland
| | - Federico Battiston
- Department of Network and Data Science, Central European University, 1100 Vienna, Austria
| | - Caterina De Bacco
- Max Planck Institute for Intelligent Systems, Cyber Valley, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Di Gaetano L, Battiston F, Starnini M. Percolation and Topological Properties of Temporal Higher-Order Networks. PHYSICAL REVIEW LETTERS 2024; 132:037401. [PMID: 38307051 DOI: 10.1103/physrevlett.132.037401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
Many complex systems that exhibit temporal nonpairwise interactions can be represented by means of generative higher-order network models. Here, we propose a hidden variable formalism to analytically characterize a general class of higher-order network models. We apply our framework to a temporal higher-order activity-driven model, providing analytical expressions for the main topological properties of the time-integrated hypergraphs, depending on the integration time and the activity distributions characterizing the model. Furthermore, we provide analytical estimates for the percolation times of general classes of uncorrelated and correlated hypergraphs. Finally, we quantify the extent to which the percolation time of empirical social interactions is underestimated when their higher-order nature is neglected.
Collapse
Affiliation(s)
- Leonardo Di Gaetano
- Department of Network and Data Science, Central European University, 1100 Vienna, Austria
| | - Federico Battiston
- Department of Network and Data Science, Central European University, 1100 Vienna, Austria
| | - Michele Starnini
- Departament de Fisica, Universitat Politecnica de Catalunya, Campus Nord, 08034 Barcelona, Spain
- CENTAI Institute, 10138 Turin, Italy
| |
Collapse
|
4
|
Inference of hyperedges and overlapping communities in hypergraphs. Nat Commun 2022; 13:7229. [PMID: 36433942 PMCID: PMC9700742 DOI: 10.1038/s41467-022-34714-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Hypergraphs, encoding structured interactions among any number of system units, have recently proven a successful tool to describe many real-world biological and social networks. Here we propose a framework based on statistical inference to characterize the structural organization of hypergraphs. The method allows to infer missing hyperedges of any size in a principled way, and to jointly detect overlapping communities in presence of higher-order interactions. Furthermore, our model has an efficient numerical implementation, and it runs faster than dyadic algorithms on pairwise records projected from higher-order data. We apply our method to a variety of real-world systems, showing strong performance in hyperedge prediction tasks, detecting communities well aligned with the information carried by interactions, and robustness against addition of noisy hyperedges. Our approach illustrates the fundamental advantages of a hypergraph probabilistic model when modeling relational systems with higher-order interactions.
Collapse
|
5
|
Guo G, Zhao Y, Liu C, Fu Y, Xi X, Jin L, Shi D, Wang L, Duan Y, Huang J, Tan S, Yin G. Method for persistent topological features extraction of schizophrenia patients' electroencephalography signal based on persistent homology. Front Comput Neurosci 2022; 16:1024205. [PMID: 36277610 PMCID: PMC9579369 DOI: 10.3389/fncom.2022.1024205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
With the development of network science and graph theory, brain network research has unique advantages in explaining those mental diseases, the neural mechanism of which is unclear. Additionally, it can provide a new perspective in revealing the pathophysiological mechanism of brain diseases from the system level. The selection of threshold plays an important role in brain networks construction. There are no generally accepted criteria for determining the proper threshold. Therefore, based on the topological data analysis of persistent homology theory, this study developed a multi-scale brain network modeling analysis method, which enables us to quantify various persistent topological features at different scales in a coherent manner. In this method, the Vietoris-Rips filtering algorithm is used to extract dynamic persistent topological features by gradually increasing the threshold in the range of full-scale distances. Subsequently, the persistent topological features are visualized using barcodes and persistence diagrams. Finally, the stability of persistent topological features is analyzed by calculating the Bottleneck distances and Wasserstein distances between the persistence diagrams. Experimental results show that compared with the existing methods, this method can extract the topological features of brain networks more accurately and improves the accuracy of diagnostic and classification. This work not only lays a foundation for exploring the higher-order topology of brain functional networks in schizophrenia patients, but also enhances the modeling ability of complex brain systems to better understand, analyze, and predict their dynamic behaviors.
Collapse
Affiliation(s)
- Guangxing Guo
- College of Geography Science, Taiyuan Normal University, Jinzhong, China
- Institute of Big Data Analysis Technology and Application, Taiyuan Normal University, Jinzhong, China
- College of Resource and Environment, Shanxi Agricultural University, Taigu, China
| | - Yanli Zhao
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Chenxu Liu
- Laboratory of Data Mining and Machine Learning, College of Computer Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Yongcan Fu
- Laboratory of Data Mining and Machine Learning, College of Computer Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Xinhua Xi
- Laboratory of Data Mining and Machine Learning, College of Computer Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Lizhong Jin
- College of Applied Science, Taiyuan University of Science and Technology, Taiyuan, China
| | - Dongli Shi
- Laboratory of Data Mining and Machine Learning, College of Computer Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Lin Wang
- Laboratory of Data Mining and Machine Learning, College of Computer Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Yonghong Duan
- College of Resource and Environment, Shanxi Agricultural University, Taigu, China
| | - Jie Huang
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Guimei Yin
- Laboratory of Data Mining and Machine Learning, College of Computer Science and Technology, Taiyuan Normal University, Jinzhong, China
| |
Collapse
|
6
|
Landry NW, Restrepo JG. Hypergraph assortativity: A dynamical systems perspective. CHAOS (WOODBURY, N.Y.) 2022; 32:053113. [PMID: 35649990 DOI: 10.1063/5.0086905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
The largest eigenvalue of the matrix describing a network's contact structure is often important in predicting the behavior of dynamical processes. We extend this notion to hypergraphs and motivate the importance of an analogous eigenvalue, the expansion eigenvalue, for hypergraph dynamical processes. Using a mean-field approach, we derive an approximation to the expansion eigenvalue in terms of the degree sequence for uncorrelated hypergraphs. We introduce a generative model for hypergraphs that includes degree assortativity, and use a perturbation approach to derive an approximation to the expansion eigenvalue for assortative hypergraphs. We define the dynamical assortativity, a dynamically sensible definition of assortativity for uniform hypergraphs, and describe how reducing the dynamical assortativity of hypergraphs through preferential rewiring can extinguish epidemics. We validate our results with both synthetic and empirical datasets.
Collapse
Affiliation(s)
- Nicholas W Landry
- Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Juan G Restrepo
- Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
7
|
Majhi S, Perc M, Ghosh D. Dynamics on higher-order networks: a review. J R Soc Interface 2022; 19:20220043. [PMID: 35317647 PMCID: PMC8941407 DOI: 10.1098/rsif.2022.0043] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Network science has evolved into an indispensable platform for studying complex systems. But recent research has identified limits of classical networks, where links connect pairs of nodes, to comprehensively describe group interactions. Higher-order networks, where a link can connect more than two nodes, have therefore emerged as a new frontier in network science. Since group interactions are common in social, biological and technological systems, higher-order networks have recently led to important new discoveries across many fields of research. Here, we review these works, focusing in particular on the novel aspects of the dynamics that emerges on higher-order networks. We cover a variety of dynamical processes that have thus far been studied, including different synchronization phenomena, contagion processes, the evolution of cooperation and consensus formation. We also outline open challenges and promising directions for future research.
Collapse
Affiliation(s)
- Soumen Majhi
- Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, Josefstödter Straße 39, 1080 Vienna, Austria
- Alma Mater Europaea, Slovenska ulica 17, 2000 Maribor, Slovenia
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
8
|
Krishnagopal S, Bianconi G. Spectral detection of simplicial communities via Hodge Laplacians. Phys Rev E 2021; 104:064303. [PMID: 35030957 DOI: 10.1103/physreve.104.064303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/12/2021] [Indexed: 11/07/2022]
Abstract
While the study of graphs has been very popular, simplicial complexes are relatively new in the network science community. Despite being a source of rich information, graphs are limited to pairwise interactions. However, several real-world networks such as social networks, neuronal networks, etc., involve interactions between more than two nodes. Simplicial complexes provide a powerful mathematical framework to model such higher-order interactions. It is well known that the spectrum of the graph Laplacian is indicative of community structure, and this relation is exploited by spectral clustering algorithms. Here we propose that the spectrum of the Hodge Laplacian, a higher-order Laplacian defined on simplicial complexes, encodes simplicial communities. We formulate an algorithm to extract simplicial communities (of arbitrary dimension). We apply this algorithm to simplicial complex benchmarks and to real higher-order network data including social networks and networks extracted using language or text processing tools. However, datasets of simplicial complexes are scarce, and for the vast majority of datasets that may involve higher-order interactions, only the set of pairwise interactions are available. Hence, we use known properties of the data to infer the most likely higher-order interactions. In other words, we introduce an inference method to predict the most likely simplicial complex given the community structure of its network skeleton. This method identifies as most likely the higher-order interactions inducing simplicial communities that maximize the adjusted mutual information measured with respect to ground-truth community structure. Finally, we consider higher-order networks constructed through thresholding the edge weights of collaboration networks (encoding only pairwise interactions) and provide an example of persistent simplicial communities that are sustained over a wide range of the threshold.
Collapse
Affiliation(s)
- Sanjukta Krishnagopal
- Gatsby Computational Neuroscience Unit, University College London, London, WC1E 6BT, United Kingdom
| | - Ginestra Bianconi
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom and The Alan Turing Institute, London, NW1 2DB, United Kingdom
| |
Collapse
|
9
|
Yen TC. Construction of simplicial complexes with prescribed degree-size sequences. Phys Rev E 2021; 104:L042303. [PMID: 34781564 DOI: 10.1103/physreve.104.l042303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 11/07/2022]
Abstract
We study the realizability of simplicial complexes with a given pair of integer sequences, representing the node degree distribution and the facet size distribution, respectively. While the s-uniform variant of the problem is NP-complete when s≥3, we identify two populations of input sequences, most of which can be solved in polynomial time using a recursive algorithm that we contribute. Combining with a sampler for the simplicial configuration model [J.-G. Young et al., Phys. Rev. E 96, 032312 (2017)2470-004510.1103/PhysRevE.96.032312], we facilitate the efficient sampling of simplicial ensembles from arbitrary degree and size distributions. We find that, contrary to expectations based on dyadic networks, increasing the nodes' degrees reduces the number of loops in simplicial complexes. Our work unveils a fundamental constraint on the degree-size sequences and sheds light on further analyses of higher-order phenomena based on local structures.
Collapse
Affiliation(s)
- Tzu-Chi Yen
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
10
|
Spectral estimation for detecting low-dimensional structure in networks using arbitrary null models. PLoS One 2021; 16:e0254057. [PMID: 34214126 PMCID: PMC8253422 DOI: 10.1371/journal.pone.0254057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/19/2021] [Indexed: 11/19/2022] Open
Abstract
Discovering low-dimensional structure in real-world networks requires a suitable null model that defines the absence of meaningful structure. Here we introduce a spectral approach for detecting a network’s low-dimensional structure, and the nodes that participate in it, using any null model. We use generative models to estimate the expected eigenvalue distribution under a specified null model, and then detect where the data network’s eigenspectra exceed the estimated bounds. On synthetic networks, this spectral estimation approach cleanly detects transitions between random and community structure, recovers the number and membership of communities, and removes noise nodes. On real networks spectral estimation finds either a significant fraction of noise nodes or no departure from a null model, in stark contrast to traditional community detection methods. Across all analyses, we find the choice of null model can strongly alter conclusions about the presence of network structure. Our spectral estimation approach is therefore a promising basis for detecting low-dimensional structure in real-world networks, or lack thereof.
Collapse
|
11
|
Hartle H, Papadopoulos F, Krioukov D. Dynamic hidden-variable network models. Phys Rev E 2021; 103:052307. [PMID: 34134209 DOI: 10.1103/physreve.103.052307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/12/2021] [Indexed: 11/07/2022]
Abstract
Models of complex networks often incorporate node-intrinsic properties abstracted as hidden variables. The probability of connections in the network is then a function of these variables. Real-world networks evolve over time and many exhibit dynamics of node characteristics as well as of linking structure. Here we introduce and study natural temporal extensions of static hidden-variable network models with stochastic dynamics of hidden variables and links. The dynamics is controlled by two parameters: one that tunes the rate of change of hidden variables and another that tunes the rate at which node pairs reevaluate their connections given the current values of hidden variables. Snapshots of networks in the dynamic models are equivalent to networks generated by the static models only if the link reevaluation rate is sufficiently larger than the rate of hidden-variable dynamics or if an additional mechanism is added whereby links actively respond to changes in hidden variables. Otherwise, links are out of equilibrium with respect to hidden variables and network snapshots exhibit structural deviations from the static models. We examine the level of structural persistence in the considered models and quantify deviations from staticlike behavior. We explore temporal versions of popular static models with community structure, latent geometry, and degree heterogeneity. While we do not attempt to directly model real networks, we comment on interesting qualitative resemblances to real systems. In particular, we speculate that links in some real networks are out of equilibrium with respect to hidden variables, partially explaining the presence of long-ranged links in geometrically embedded systems and intergroup connectivity in modular systems. We also discuss possible extensions, generalizations, and applications of the introduced class of dynamic network models.
Collapse
Affiliation(s)
- Harrison Hartle
- Network Science Institute, Northeastern University, Boston, 02115 Massachusetts, USA
| | - Fragkiskos Papadopoulos
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 3036 Limassol, Cyprus
| | - Dmitri Krioukov
- Network Science Institute, Northeastern University, Boston, 02115 Massachusetts, USA.,Northeastern University, Departments of Physics, Mathematics, and Electrical & Computer Engineering, Boston, 02115 Massachusetts, USA
| |
Collapse
|
12
|
Theilman B, Perks K, Gentner TQ. Spike Train Coactivity Encodes Learned Natural Stimulus Invariances in Songbird Auditory Cortex. J Neurosci 2021; 41:73-88. [PMID: 33177068 PMCID: PMC7786213 DOI: 10.1523/jneurosci.0248-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/21/2022] Open
Abstract
The capacity for sensory systems to encode relevant information that is invariant to many stimulus changes is central to normal, real-world, cognitive function. This invariance is thought to be reflected in the complex spatiotemporal activity patterns of neural populations, but our understanding of population-level representational invariance remains coarse. Applied topology is a promising tool to discover invariant structure in large datasets. Here, we use topological techniques to characterize and compare the spatiotemporal pattern of coactive spiking within populations of simultaneously recorded neurons in the secondary auditory region caudal medial neostriatum of European starlings (Sturnus vulgaris). We show that the pattern of population spike train coactivity carries stimulus-specific structure that is not reducible to that of individual neurons. We then introduce a topology-based similarity measure for population coactivity that is sensitive to invariant stimulus structure and show that this measure captures invariant neural representations tied to the learned relationships between natural vocalizations. This demonstrates one mechanism whereby emergent stimulus properties can be encoded in population activity, and shows the potential of applied topology for understanding invariant representations in neural populations.SIGNIFICANCE STATEMENT Information in neural populations is carried by the temporal patterns of spikes. We applied novel mathematical tools from the field of algebraic topology to quantify the structure of these temporal patterns. We found that, in a secondary auditory region of a songbird, these patterns reflected invariant information about a learned stimulus relationship. These results demonstrate that topology provides a novel approach for characterizing neural responses that is sensitive to invariant relationships that are critical for the perception of natural stimuli.
Collapse
Affiliation(s)
- Brad Theilman
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California 92093
| | - Krista Perks
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California 92093
| | - Timothy Q Gentner
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California 92093
- Department of Psychology, University of California San Diego, La Jolla, California 92093
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
- Kavli Institute for Brain and Mind, La Jolla, California 92093
| |
Collapse
|
13
|
Landry NW, Restrepo JG. The effect of heterogeneity on hypergraph contagion models. CHAOS (WOODBURY, N.Y.) 2020; 30:103117. [PMID: 33138447 PMCID: PMC7585450 DOI: 10.1063/5.0020034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/21/2020] [Indexed: 05/06/2023]
Abstract
The dynamics of network social contagion processes such as opinion formation and epidemic spreading are often mediated by interactions between multiple nodes. Previous results have shown that these higher-order interactions can profoundly modify the dynamics of contagion processes, resulting in bistability, hysteresis, and explosive transitions. In this paper, we present and analyze a hyperdegree-based mean-field description of the dynamics of the susceptible-infected-susceptible model on hypergraphs, i.e., networks with higher-order interactions, and illustrate its applicability with the example of a hypergraph where contagion is mediated by both links (pairwise interactions) and triangles (three-way interactions). We consider various models for the organization of link and triangle structures and different mechanisms of higher-order contagion and healing. We find that explosive transitions can be suppressed by heterogeneity in the link degree distribution when links and triangles are chosen independently or when link and triangle connections are positively correlated when compared to the uncorrelated case. We verify these results with microscopic simulations of the contagion process and with analytic predictions derived from the mean-field model. Our results show that the structure of higher-order interactions can have important effects on contagion processes on hypergraphs.
Collapse
Affiliation(s)
- Nicholas W. Landry
- Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
14
|
Geniesse C, Sporns O, Petri G, Saggar M. Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis. Netw Neurosci 2019; 3:763-778. [PMID: 31410378 PMCID: PMC6663215 DOI: 10.1162/netn_a_00093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/25/2019] [Indexed: 01/07/2023] Open
Abstract
In this article, we present an open source neuroinformatics platform for exploring, analyzing, and validating distilled graphical representations of high-dimensional neuroimaging data extracted using topological data analysis (TDA). TDA techniques like Mapper have been recently applied to examine the brain's dynamical organization during ongoing cognition without averaging data in space, in time, or across participants at the outset. Such TDA-based approaches mark an important deviation from standard neuroimaging analyses by distilling complex high-dimensional neuroimaging data into simple-yet neurophysiologically valid and behaviorally relevant-representations that can be interactively explored at the single-participant level. To facilitate wider use of such techniques within neuroimaging and general neuroscience communities, our work provides several tools for visualizing, interacting with, and grounding TDA-generated graphical representations in neurophysiology. Through Python-based Jupyter notebooks and open datasets, we provide a platform to assess and visualize different intermittent stages of Mapper and examine the influence of Mapper parameters on the generated representations. We hope this platform could enable researchers and clinicians alike to explore topological representations of neuroimaging data and generate biological insights underlying complex mental disorders.
Collapse
Affiliation(s)
- Caleb Geniesse
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Giovanni Petri
- ISI Foundation, Turin, Italy
- ISI Global Science Foundation, New York, NY, USA
| | - Manish Saggar
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Iacopini I, Petri G, Barrat A, Latora V. Simplicial models of social contagion. Nat Commun 2019; 10:2485. [PMID: 31171784 PMCID: PMC6554271 DOI: 10.1038/s41467-019-10431-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/03/2019] [Indexed: 11/24/2022] Open
Abstract
Complex networks have been successfully used to describe the spread of diseases in populations of interacting individuals. Conversely, pairwise interactions are often not enough to characterize social contagion processes such as opinion formation or the adoption of novelties, where complex mechanisms of influence and reinforcement are at work. Here we introduce a higher-order model of social contagion in which a social system is represented by a simplicial complex and contagion can occur through interactions in groups of different sizes. Numerical simulations of the model on both empirical and synthetic simplicial complexes highlight the emergence of novel phenomena such as a discontinuous transition induced by higher-order interactions. We show analytically that the transition is discontinuous and that a bistable region appears where healthy and endemic states co-exist. Our results help explain why critical masses are required to initiate social changes and contribute to the understanding of higher-order interactions in complex systems.
Collapse
Affiliation(s)
- Iacopo Iacopini
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, UK
- The Alan Turing Institute, The British Library, London, NW1 2DB, UK
| | - Giovanni Petri
- ISI Foundation, Via Chisola 5, 10126, Turin, Italy
- ISI Global Science Foundation, 33 W 42nd St, New York, NY, 10036, USA
| | - Alain Barrat
- ISI Foundation, Via Chisola 5, 10126, Turin, Italy
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, 13009, France
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, UK.
- The Alan Turing Institute, The British Library, London, NW1 2DB, UK.
- Dipartimento di Fisica ed Astronomia, Universitá di Catania and INFN, 95123, Catania, Italy.
- Complexity Science Hub Vienna, Josefstädter Strasse 39, Vienna, 1080, Austria.
| |
Collapse
|
16
|
Petri G, Barrat A. Simplicial Activity Driven Model. PHYSICAL REVIEW LETTERS 2018; 121:228301. [PMID: 30547619 DOI: 10.1103/physrevlett.121.228301] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Many complex systems find a convenient representation in terms of networks: structures made by pairwise interactions (links) of elements (nodes). For many biological and social systems, elementary interactions involve, however, more than two elements, and simplicial complexes are more adequate to describe such phenomena. Moreover, these interactions often change over time. Here, we propose a framework to model such an evolution: the simplicial activity driven model, in which the building block is a simplex of nodes representing a multiagent interaction. We show analytically and numerically that the use of simplicial structures leads to crucial structural differences with respect to the activity driven model, a paradigmatic temporal network model involving only binary interactions. It also impacts the outcome of paradigmatic processes modeling disease propagation or social contagion. In particular, fluctuations in the number of nodes involved in the interactions can affect the outcome of models of simple contagion processes, contrarily to what happens in the activity driven model.
Collapse
Affiliation(s)
| | - Alain Barrat
- ISI Foundation, 10126 Turin, Italy
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, 13009 Marseille, France
| |
Collapse
|
17
|
Salnikov V, Cassese D, Lambiotte R, Jones NS. Co-occurrence simplicial complexes in mathematics: identifying the holes of knowledge. APPLIED NETWORK SCIENCE 2018; 3:37. [PMID: 30839828 PMCID: PMC6214324 DOI: 10.1007/s41109-018-0074-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/18/2018] [Indexed: 06/09/2023]
Abstract
In the last years complex networks tools contributed to provide insights on the structure of research, through the study of collaboration, citation and co-occurrence networks. The network approach focuses on pairwise relationships, often compressing multidimensional data structures and inevitably losing information. In this paper we propose for the first time a simplicial complex approach to word co-occurrences, providing a natural framework for the study of higher-order relations in the space of scientific knowledge. Using topological methods we explore the conceptual landscape of mathematical research, focusing on homological holes, regions with low connectivity in the simplicial structure. We find that homological holes are ubiquitous, which suggests that they capture some essential feature of research practice in mathematics. k-dimensional holes die when every concept in the hole appears in an article together with other k+1 concepts in the hole, hence their death may be a sign of the creation of new knowledge, as we show with some examples. We find a positive relation between the size of a hole and the time it takes to be closed: larger holes may represent potential for important advances in the field because they separate conceptually distant areas. We provide further description of the conceptual space by looking for the simplicial analogs of stars and explore the likelihood of edges in a star to be also part of a homological cycle. We also show that authors' conceptual entropy is positively related with their contribution to homological holes, suggesting that polymaths tend to be on the frontier of research.
Collapse
Affiliation(s)
- Vsevolod Salnikov
- University of Namur and NaXys, Rempart de la Vierge, Namur, 5000 Belgium
| | - Daniele Cassese
- University of Namur and NaXys, Rempart de la Vierge, Namur, 5000 Belgium
- ICTEAM, University of Louvain, Av Georges Lemaître, Louvain-la-Neuve, 1348 Belgium
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG UK
| | - Renaud Lambiotte
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG UK
| | - Nick S. Jones
- Department of Mathematics, Imperial College, South Kensington Campus, London, SW7 2AZ UK
| |
Collapse
|
18
|
Courtney OT, Bianconi G. Dense power-law networks and simplicial complexes. Phys Rev E 2018; 97:052303. [PMID: 29906951 DOI: 10.1103/physreve.97.052303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Indexed: 06/08/2023]
Abstract
There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P(k)∝k^{-γ} with γ∈(1,2]. Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ=2 or directed networks with power-law out-degree distribution with tunable exponent γ∈(1,2). We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.
Collapse
Affiliation(s)
- Owen T Courtney
- School of Mathematical Sciences, Queen Mary University of London, E1 4NS, London, United Kingdom
| | - Ginestra Bianconi
- School of Mathematical Sciences, Queen Mary University of London, E1 4NS, London, United Kingdom
| |
Collapse
|
19
|
Klaise J, Johnson S. Relaxation dynamics of maximally clustered networks. Phys Rev E 2018; 97:012302. [PMID: 29448382 DOI: 10.1103/physreve.97.012302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 11/07/2022]
Abstract
We study the relaxation dynamics of fully clustered networks (maximal number of triangles) to an unclustered state under two different edge dynamics-the double-edge swap, corresponding to degree-preserving randomization of the configuration model, and single edge replacement, corresponding to full randomization of the Erdős-Rényi random graph. We derive expressions for the time evolution of the degree distribution, edge multiplicity distribution and clustering coefficient. We show that under both dynamics networks undergo a continuous phase transition in which a giant connected component is formed. We calculate the position of the phase transition analytically using the Erdős-Rényi phenomenology.
Collapse
Affiliation(s)
- Janis Klaise
- Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Samuel Johnson
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|