1
|
Huang R, Li Q, Qiu Y. Three-dimensional lattice Boltzmann model with self-tuning equation of state for multiphase flows. Phys Rev E 2024; 109:065306. [PMID: 39021008 DOI: 10.1103/physreve.109.065306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/14/2024] [Indexed: 07/20/2024]
Abstract
In this work, the recent lattice Boltzmann (LB) model with self-tuning equation of state (EOS) [Huang et al., Phys. Rev. E 99, 023303 (2019)2470-004510.1103/PhysRevE.99.023303] is extended to three dimensions for the simulation of multiphase flows, which is based on the standard three-dimensional 27-velocity lattice and multiple-relaxation-time collision operator. To achieve the self-tuning EOS, the equilibrium moment is devised by introducing a built-in variable, and the collision matrix is improved by introducing some velocity-dependent nondiagonal elements. Meanwhile, the additional cubic terms of velocity in recovering the Newtonian viscous stress are eliminated to enhance the numerical accuracy. For modeling multiphase flows, an attractive pairwise interaction force is introduced to mimic the long-range molecular interaction, and a consistent scheme is proposed to compensate for the ɛ^{3}-order discrete lattice effect. Thermodynamic consistency in a strict sense is established for the multiphase LB model with self-tuning EOS, and the wetting condition is also treated in a thermodynamically consistent manner. As a result, the contact angle, surface tension, and interface thickness can be independently adjusted in the present theoretical framework. Numerical tests are first performed to validate the multiphase LB model with self-tuning EOS and the theoretical analyses of bulk and surface thermodynamics. The collision of equal-sized droplets is then simulated to demonstrate the applicability and effectiveness of the present LB model for multiphase flows.
Collapse
|
2
|
Saito S, Takada N, Baba S, Someya S, Ito H. Generalized equilibria for color-gradient lattice Boltzmann model based on higher-order Hermite polynomials: A simplified implementation with central moments. Phys Rev E 2023; 108:065305. [PMID: 38243429 DOI: 10.1103/physreve.108.065305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/19/2023] [Indexed: 01/21/2024]
Abstract
We propose generalized equilibria of a three-dimensional color-gradient lattice Boltzmann model for two-component two-phase flows using higher-order Hermite polynomials. Although the resulting equilibrium distribution function, which includes a sixth-order term on the velocity, is computationally cumbersome, its equilibrium central moments (CMs) are velocity-independent and have a simplified form. Numerical experiments show that our approach, as in Wen et al. [Phys. Rev. E 100, 023301 (2019)2470-004510.1103/PhysRevE.100.023301] who consider terms up to third order, improves the Galilean invariance compared to that of the conventional approach. Dynamic problems can be solved with high accuracy at a density ratio of 10; however, the accuracy is still limited to a density ratio of 1000. For lower density ratios, the generalized equilibria benefit from the CM-based multiple-relaxation-time model, especially at very high Reynolds numbers, significantly improving the numerical stability.
Collapse
Affiliation(s)
- Shimpei Saito
- Research Institute for Energy Conservation (iECO), National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba 3058564, Japan
| | - Naoki Takada
- Research Institute for Energy Conservation (iECO), National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba 3058564, Japan
| | - Soumei Baba
- Research Institute for Energy Conservation (iECO), National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba 3058564, Japan
| | - Satoshi Someya
- Research Institute for Energy Conservation (iECO), National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba 3058564, Japan
| | - Hiroshi Ito
- Research Institute for Energy Conservation (iECO), National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba 3058564, Japan
| |
Collapse
|
3
|
Atif M, Kolluru PK, Ansumali S. Essentially entropic lattice Boltzmann model: Theory and simulations. Phys Rev E 2022; 106:055307. [PMID: 36559488 DOI: 10.1103/physreve.106.055307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
We present a detailed description of the essentially entropic lattice Boltzmann model. The entropic lattice Boltzmann model guarantees unconditional numerical stability by iteratively solving the nonlinear entropy evolution equation. In this paper we explain the construction of closed-form analytic solutions to this equation. We demonstrate that near equilibrium this analytic solution reduces to the standard lattice Boltzmann model. We consider a few test cases to show that the analytic solution does not exhibit any significant deviation from the iterative solution. We also extend the analytical solution for the Ellipsoidal Statistical (ES)-Bhatnagar-Gross-Krook model to remove the limitation on the Prandtl number for heat transfer problems. The simplicity of the analytic solution removes the computational overhead and algorithmic complexity associated with the entropic lattice Boltzmann models.
Collapse
Affiliation(s)
- Mohammad Atif
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Praveen Kumar Kolluru
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Santosh Ansumali
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.,SankhyaSutra Labs Limited, Bangalore 560045, India
| |
Collapse
|
4
|
Ilyin O. Discrete-velocity Boltzmann model: Regularization and linear stability. Phys Rev E 2022; 105:045312. [PMID: 35590549 DOI: 10.1103/physreve.105.045312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
A discrete-velocity Boltzmann model for a nine-velocity lattice is considered. Compared to the conventional lattice Boltzmann (LB) schemes the collisions for the model are defined explicitly. Space and time discretization of the model is based on the collide and stream method; in addition, the regularization of the collision term is proposed. It is demonstrated that the regularized model can be represented as a two-relaxation-time LB model of a special type. The scheme is compared to the Onsager regularized (a specific filtered Galilean invariant model) and recursively regularized LB equations in terms of stability and dissipation properties, and linear stability analysis is performed. Several numerical experiments are carried out: double shear layer, lid-driven cavity flow, and propagation of acoustic and shear waves are considered for different grid resolutions, Mach and Reynolds numbers. It is shown that free parameters in the model corresponding to collision cross sections can be adjusted in such a way that the dissipation and stability properties can be controlled.
Collapse
Affiliation(s)
- Oleg Ilyin
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, Vavilova - 44,2, Moscow 119333, Russia
| |
Collapse
|
5
|
Abstract
Radial basis function generated finite differences (RBF-FD) represent the latest discretization approach for solving partial differential equations. Their benefits include high geometric flexibility, simple implementation, and opportunity for large-scale parallel computing. Compared to other meshfree methods, typically based upon moving least squares (MLS), the RBF-FD method is able to recover a high order of algebraic accuracy while remaining better conditioned. These features make RBF-FD a promising candidate for kinetic-based fluid simulations such as lattice Boltzmann methods (LB). Pursuant to this approach, we propose a characteristic-based off-lattice Boltzmann method (OLBM) using the strong form of the discrete Boltzmann equation and radial basis function generated finite differences (RBF-FD) for the approximation of spatial derivatives. Decoupling the discretizations of momentum and space enables the use of irregular point cloud, local refinement, and various symmetric velocity sets with higher order isotropy. The accuracy and computational efficiency of the proposed method are studied using the test cases of Taylor–Green vortex flow, lid-driven cavity, and periodic flow over a square array of cylinders. For scattered grids, we find the polyharmonic spline + poly RBF-FD method provides better accuracy compared to MLS. For Cartesian node layouts, the results are the opposite, with MLS offering better accuracy. Altogether, our results suggest that the RBF-FD paradigm can be applied successfully also for kinetic-based fluid simulation with lattice Boltzmann methods.
Collapse
|
6
|
Wilde D, Krämer A, Reith D, Foysi H. High-order semi-Lagrangian kinetic scheme for compressible turbulence. Phys Rev E 2021; 104:025301. [PMID: 34525552 DOI: 10.1103/physreve.104.025301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Turbulent compressible flows are traditionally simulated using explicit time integrators applied to discretized versions of the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely restricts the maximum time-step size. Exploiting the Lagrangian nature of the Boltzmann equation's material derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM), which circumvents this restriction. While many lattice Boltzmann methods for compressible flows were restricted to two dimensions due to the enormous number of discrete velocities in three dimensions, the SLLBM uses only 45 discrete velocities. Based on compressible Taylor-Green vortex simulations we show that the new method accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or stabilizing techniques other than the filtering introduced by the interpolation, even when the time-step sizes are up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables researchers to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time-step sizes is dictated by physics rather than spatial discretization.
Collapse
Affiliation(s)
- Dominik Wilde
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany.,Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Andreas Krämer
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Dirk Reith
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Holger Foysi
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| |
Collapse
|
7
|
Jonnalagadda A, Sharma A, Agrawal A. Onsager-regularized lattice Boltzmann method: A nonequilibrium thermodynamics-based regularized lattice Boltzmann method. Phys Rev E 2021; 104:015313. [PMID: 34412301 DOI: 10.1103/physreve.104.015313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/01/2021] [Indexed: 11/06/2022]
Abstract
The regularized class of lattice Boltzmann methods (LBMs) leverage the potency of the standard lattice-Bhatnagar-Gross-Krook method by filtering out spurious nonhydrodynamic moments from the moment space; this is achieved through evaluating regularized populations via a multiscale or a Hermite polynomial expansion approach. In this paper, we propose an alternative approach for evaluating the lattice populations. This approach is based on a kinetic theory that is consistent with nonequilibrium thermodynamics and obeys the Onsager-reciprocity principle. The proposed method is verified and validated for a number of canonical problems such as the athermal shock tube, the double periodic shear layer, the lid driven cavity, flow past square cylinder, and Poiseuille flow at nonvanishing Knudsen numbers. Additionally, the proposed method is compared to existing regularized LBM schemes and is shown to yield significant improvement in the stability and accuracy of the simulations.
Collapse
Affiliation(s)
- Anirudh Jonnalagadda
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai-400076, India
| | - Atul Sharma
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai-400076, India
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai-400076, India
| |
Collapse
|
8
|
Latt J, Coreixas C, Beny J. Cross-platform programming model for many-core lattice Boltzmann simulations. PLoS One 2021; 16:e0250306. [PMID: 33914788 PMCID: PMC8084255 DOI: 10.1371/journal.pone.0250306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/04/2021] [Indexed: 11/19/2022] Open
Abstract
We present a novel, hardware-agnostic implementation strategy for lattice Boltzmann (LB) simulations, which yields massive performance on homogeneous and heterogeneous many-core platforms. Based solely on C++17 Parallel Algorithms, our approach does not rely on any language extensions, external libraries, vendor-specific code annotations, or pre-compilation steps. Thanks in particular to a recently proposed GPU back-end to C++17 Parallel Algorithms, it is shown that a single code can compile and reach state-of-the-art performance on both many-core CPU and GPU environments for the solution of a given non trivial fluid dynamics problem. The proposed strategy is tested with six different, commonly used implementation schemes to test the performance impact of memory access patterns on different platforms. Nine different LB collision models are included in the tests and exhibit good performance, demonstrating the versatility of our parallel approach. This work shows that it is less than ever necessary to draw a distinction between research and production software, as a concise and generic LB implementation yields performances comparable to those achievable in a hardware specific programming language. The results also highlight the gains of performance achieved by modern many-core CPUs and their apparent capability to narrow the gap with the traditionally massively faster GPU platforms. All code is made available to the community in form of the open-source project stlbm, which serves both as a stand-alone simulation software and as a collection of reusable patterns for the acceleration of pre-existing LB codes.
Collapse
Affiliation(s)
- Jonas Latt
- Computer Science Department, University of Geneva, Carouge, Switzerland
| | | | - Joël Beny
- Computer Science Department, University of Geneva, Carouge, Switzerland
| |
Collapse
|
9
|
Livi C, Di Staso G, Clercx HJH, Toschi F. Influence of numerical resolution on the dynamics of finite-size particles with the lattice Boltzmann method. Phys Rev E 2021; 103:013303. [PMID: 33601495 DOI: 10.1103/physreve.103.013303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
We investigate and compare the accuracy and efficiency of different numerical approaches to model the dynamics of finite-size particles using the lattice Boltzmann method (LBM). This includes the standard bounce-back (BB) and the equilibrium interpolation (EI) schemes. To accurately compare the different implementations, we first introduce a boundary condition to approximate the flow properties of an unbounded fluid in a finite simulation domain, taking into account the perturbation induced by a moving particle. We show that this boundary treatment is efficient in suppressing detrimental effects on the dynamics of spherical and ellipsoidal particles arising from the finite size of the simulation domain. We then investigate the performances of the BB and EI schemes in modeling the dynamics of a spherical particle settling under Stokes conditions, which can now be reproduced with great accuracy thanks to the treatment of the exterior boundary. We find that the EI scheme outperforms the BB scheme in providing a better accuracy scaling with respect to the resolution of the settling particle, while suppressing finite-size effects due to the particle discretization on the lattice grid. Additionally, in order to further increase the capability of the algorithm in modeling particles of sizes comparable to the lattice spacing, we propose an improvement to the EI scheme, the complete equilibrium interpolation (CEI). This approach allows us to accurately capture the boundaries of the particle also when located between two fluid nodes. We evaluate the CEI performance in solving the dynamics of an under-resolved particle under analogous Stokes conditions and also for the case of a rotating ellipsoid in a shear flow. Finally, we show that EI and CEI are able to recover the correct flow solutions also at small, but finite, Reynolds number. Adopting the CEI scheme it is not only possible to detect particles with zero lattice occupation, but also to increase up to one order of magnitude the accuracy of the dynamics of particles with a size comparable to the lattice spacing with respect to the BB and the EI schemes.
Collapse
Affiliation(s)
- C Livi
- Fluids and Flows Group and J.M. Burgers Centre for Fluid Dynamics, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - G Di Staso
- Fluids and Flows Group and J.M. Burgers Centre for Fluid Dynamics, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - H J H Clercx
- Fluids and Flows Group and J.M. Burgers Centre for Fluid Dynamics, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - F Toschi
- Fluids and Flows Group and J.M. Burgers Centre for Fluid Dynamics, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Huang R, Lan L, Li Q. Lattice Boltzmann simulations of thermal flows beyond the Boussinesq and ideal-gas approximations. Phys Rev E 2020; 102:043304. [PMID: 33212591 DOI: 10.1103/physreve.102.043304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/09/2020] [Indexed: 11/07/2022]
Abstract
In this work, the recent lattice Boltzmann model with self-tuning equation of state (EOS) [R. Huang et al., J. Comput. Phys. 392, 227 (2019)]JCTPAH0021-999110.1016/j.jcp.2019.04.044 is improved in three aspects to simulate the thermal flows beyond the Boussinesq and ideal-gas approximations. First, an improved scheme is proposed to eliminate the additional cubic terms of velocity, which can significantly improve the numerical accuracy. Second, a local scheme is proposed to calculate the density gradient instead of the conventional finite-difference scheme. Third, a scaling factor is introduced into the lattice sound speed, which can be adjusted to effectively enhance numerical stability. The thermal Couette flow of a nonattracting rigid-sphere fluid, which is described by the Carnahan-Starling EOS, is first simulated, and the better performance of the present improvements on the numerical accuracy and stability is demonstrated. As a further application, the turbulent Rayleigh-Bénard convection in a supercritical fluid slightly above its critical point, which is described by the van der Waals EOS, is successfully simulated by the present lattice Boltzmann model. The piston effect of the supercritical fluid is successfully captured, which induces a fast and homogeneous increase of the temperature in the bulk region, and the time evolution from the initiation of heating to the final turbulent state is analyzed in detail and divided into five stages.
Collapse
Affiliation(s)
- Rongzong Huang
- School of Energy Science and Engineering, Central South University, 410083 Changsha, China
| | - Lijuan Lan
- School of Automation, Central South University, 410083 Changsha, China
| | - Qing Li
- School of Energy Science and Engineering, Central South University, 410083 Changsha, China
| |
Collapse
|
11
|
Wissocq G, Coreixas C, Boussuge JF. Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods. Phys Rev E 2020; 102:053305. [PMID: 33327122 DOI: 10.1103/physreve.102.053305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/14/2020] [Indexed: 11/07/2022]
Abstract
The present work proposes a general methodology to study stability and isotropy properties of lattice Boltzmann (LB) schemes. As a first investigation, such a methodology is applied to better understand these properties in the context of regularized approaches. To this extent, linear stability analyses of two-dimensional models are proposed: the standard Bhatnagar-Gross-Krook collision model, the original precollision regularization, and the recursive regularized model, where off-equilibrium distributions are partially computed thanks to a recursive formula. A systematic identification of the physical content carried by each LB mode is done by analyzing the eigenvectors of the linear systems. Stability results are then numerically confirmed by performing simulations of shear and acoustic waves. This work allows drawing fair conclusions on the stability properties of each model. In particular, among the aforementioned models, recursive regularization turns out to be the most stable one for the D2Q9 lattice, especially in the zero-viscosity limit. Two major properties shared by every regularized model are highlighted: (1) a mode filtering property and (2) an incorrect, and broadly anisotropic, dissipation rate of the modes carrying physical waves in under-resolved conditions. The first property is the main source of increased stability, especially for the recursive regularization. It is a direct consequence of the reconstruction of off-equilibrium populations before each collision process, decreasing the rank of the system of discrete equations. The second property seems to be related to numerical errors directly induced by the equilibration of high-order moments. In such a case, this property is likely to occur with any collision model that follows such a stabilization methodology.
Collapse
Affiliation(s)
| | - Christophe Coreixas
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | | |
Collapse
|
12
|
Wang L. Enhanced multi-relaxation-time lattice Boltzmann model by entropic stabilizers. Phys Rev E 2020; 102:023307. [PMID: 32942451 DOI: 10.1103/physreve.102.023307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 07/23/2020] [Indexed: 11/07/2022]
Abstract
The difficulty of choice of relaxation rates in multi-relaxation-time lattice Boltzmann model (MRT-LBM) is surmounted by solution of least-square problem of entropic stabilizer equations. Relaxation rates in the enhanced MRT-LBM are evolving with time rather than remain constants. To derive entropic stabilizer equations, nonequilibrium population is split into different modes in terms of column vectors in the inverse transform matrix. The entropic stabilizer equations are achieved by minimization of H-function. Different moment representations in MRT-LBM, such as Gram-Schmidt orthogonal moment, natural moment, and central moment, are tested for double periodic shear flow, shock tube problem, and lid-driven cavity flow, which demonstrates the potential of enhanced MRT-LBM.
Collapse
Affiliation(s)
- Long Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
13
|
Chai Z, Shi B. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements. Phys Rev E 2020; 102:023306. [PMID: 32942355 DOI: 10.1103/physreve.102.023306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we first present a unified framework of multiple-relaxation-time lattice Boltzmann (MRT-LB) method for the Navier-Stokes and nonlinear convection-diffusion equations where a block-lower-triangular-relaxation matrix and an auxiliary source distribution function are introduced. We then conduct a comparison of the four popular analysis methods (Chapman-Enskog analysis, Maxwell iteration, direct Taylor expansion, and recurrence equations approaches) that have been used to obtain the macroscopic Navier-Stokes and nonlinear convection-diffusion equations from the MRT-LB method and show that from mathematical point of view, these four analysis methods can give the same equations at the second-order of expansion parameters. Finally, we give some elements that are needed in the implementation of the MRT-LB method and also find that some available LB models can be obtained from this MRT-LB method.
Collapse
Affiliation(s)
- Zhenhua Chai
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China and Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Baochang Shi
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China and Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
De Rosis A. Modeling epidemics by the lattice Boltzmann method. Phys Rev E 2020; 102:023301. [PMID: 32942396 DOI: 10.1103/physreve.102.023301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we demonstrate that the lattice Boltzmann method can be successfully adopted to investigate the dynamics of epidemics. Numerical simulations prove the excellent accuracy properties of the approach, which recovers the solution of the popular SIR model. Because spatial effects are naturally accounted for in the lattice Boltzmann formulation, the present scheme appears to be more competitive than traditional solution procedures. Interestingly, it allows us to simulate scenarios characterized by selective lockdown configurations.
Collapse
Affiliation(s)
- Alessandro De Rosis
- Department of Mechanical, Aerospace, and Civil Engineering, The University of Manchester, Manchester M13 9PL, England, United Kingdom
| |
Collapse
|
15
|
Feng Y, Guo S, Jacob J, Sagaut P. Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann method for compressible aerodynamics. Phys Rev E 2020; 101:063302. [PMID: 32688460 DOI: 10.1103/physreve.101.063302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/05/2020] [Indexed: 11/06/2022]
Abstract
Grid refinement techniques are of paramount importance for computational fluid dynamics approaches relying on the use of Cartesian grids. This is especially true of solvers dedicated to aerodynamics, in which the capture of thin shear layers require the use of small cells. In this paper, a three-dimensional grid refinement technique is developed within the framework of hybrid recursive regularized lattice Boltzmann method (HRR-LBM) for compressible high-speed flows, which is an efficient collide-stream-type method on a compact D3Q19 stencil. The proposed method is successfully assessed considering several test cases, namely, an isentropic vortex propagating through transition interface, shock-vortex interaction with intersection between grid refinement interface and shock corrugation, and transonic flows over three-dimensional DLR-M6 wing with seven levels of grid refinement.
Collapse
Affiliation(s)
- Y Feng
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France
| | - S Guo
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France
| | - J Jacob
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France
| | - P Sagaut
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France
| |
Collapse
|
16
|
Latt J, Coreixas C, Beny J, Parmigiani A. Efficient supersonic flow simulations using lattice Boltzmann methods based on numerical equilibria. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190559. [PMID: 32833583 PMCID: PMC7333948 DOI: 10.1098/rsta.2019.0559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 05/22/2023]
Abstract
A double-distribution-function based lattice Boltzmann method (DDF-LBM) is proposed for the simulation of polyatomic gases in the supersonic regime. The model relies on a numerical equilibrium that has been extensively used by discrete velocity methods since the late 1990s. Here, it is extended to reproduce an arbitrary number of moments of the Maxwell-Boltzmann distribution. These extensions to the standard 5-constraint (mass, momentum and energy) approach lead to the correct simulation of thermal, compressible flows with only 39 discrete velocities in 3D. The stability of this BGK-LBM is reinforced by relying on Knudsen-number-dependent relaxation times that are computed analytically. Hence, high Reynolds-number, supersonic flows can be simulated in an efficient and elegant manner. While the 1D Riemann problem shows the ability of the proposed approach to handle discontinuities in the zero-viscosity limit, the simulation of the supersonic flow past a NACA0012 aerofoil confirms the excellent behaviour of this model in a low-viscosity and supersonic regime. The flow past a sphere is further simulated to investigate the 3D behaviour of our model in the low-viscosity supersonic regime. The proposed model is shown to be substantially more efficient than the previous 5-moment D3Q343 DDF-LBM for both CPU and GPU architectures. It then opens up a whole new world of compressible flow applications that can be realistically tackled with a purely LB approach. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.
Collapse
Affiliation(s)
- Jonas Latt
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
- FlowKit-Numeca Group Ltd, Route d’Oron 2, 1010 Lausanne, Switzerland
- e-mail:
| | - Christophe Coreixas
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - Joël Beny
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - Andrea Parmigiani
- FlowKit-Numeca Group Ltd, Route d’Oron 2, 1010 Lausanne, Switzerland
| |
Collapse
|
17
|
Coreixas C, Wissocq G, Chopard B, Latt J. Impact of collision models on the physical properties and the stability of lattice Boltzmann methods. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190397. [PMID: 32564722 DOI: 10.1098/rsta.2019.0397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The lattice Boltzmann method (LBM) is known to suffer from stability issues when the collision model relies on the BGK approximation, especially in the zero viscosity limit and for non-vanishing Mach numbers. To tackle this problem, two kinds of solutions were proposed in the literature. They consist in changing either the numerical discretization (finite-volume, finite-difference, spectral-element, etc.) of the discrete velocity Boltzmann equation (DVBE), or the collision model. In this work, the latter solution is investigated in detail. More precisely, we propose a comprehensive comparison of (static relaxation time based) collision models, in terms of stability, and with preliminary results on their accuracy, for the simulation of isothermal high-Reynolds number flows in the (weakly) compressible regime. It starts by investigating the possible impact of collision models on the macroscopic behaviour of stream-and-collide based D2Q9-LBMs, which clarifies the exact physical properties of collision models on LBMs. It is followed by extensive linear and numerical stability analyses, supplemented with an accuracy study based on the transport of vortical structures over long distances. In order to draw conclusions as generally as possible, the most common moment spaces (raw, central, Hermite, central Hermite and cumulant), as well as regularized approaches, are considered for the comparative studies. LBMs based on dynamic collision mechanisms (entropic collision, subgrid-scale models, explicit filtering, etc.) are also briefly discussed. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.
Collapse
Affiliation(s)
- C Coreixas
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - G Wissocq
- CERFACS, 42 Avenue G. Coriolis, 31057, Toulouse Cedex, France
| | - B Chopard
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - J Latt
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| |
Collapse
|
18
|
Hosseini SA, Darabiha N, Thévenin D. Compressibility in lattice Boltzmann on standard stencils: effects of deviation from reference temperature. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190399. [PMID: 32564724 PMCID: PMC7333953 DOI: 10.1098/rsta.2019.0399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2020] [Indexed: 05/05/2023]
Abstract
With growing interest in the simulation of compressible flows using the lattice Boltzmann (LB) method, a number of different approaches have been developed. These methods can be classified as pertaining to one of two major categories: (i) solvers relying on high-order stencils recovering the Navier-Stokes-Fourier equations, and (ii) approaches relying on classical first-neighbour stencils for the compressible Navier-Stokes equations coupled to an additional (LB-based or classical) solver for the energy balance equation. In most cases, the latter relies on a thermal Hermite expansion of the continuous equilibrium distribution function (EDF) to allow for compressibility. Even though recovering the correct equation of state at the Euler level, it has been observed that deviations of local flow temperature from the reference can result in instabilities and/or over-dissipation. The aim of the present study is to evaluate the stability domain of different EDFs, different collision models, with and without the correction terms for the third-order moments. The study is first based on a linear von Neumann analysis. The correction term for the space- and time-discretized equations is derived via a Chapman-Enskog analysis and further corroborated through spectral dispersion-dissipation curves. Finally, a number of numerical simulations are performed to illustrate the proposed theoretical study. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.
Collapse
Affiliation(s)
- S. A. Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg ‘Otto von Guericke’, 39106 Magdeburg, Germany
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192 Gif-sur-Yvette Cedex, France
- International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering, Magdeburg, Germany
| | - N. Darabiha
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192 Gif-sur-Yvette Cedex, France
| | - D. Thévenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg ‘Otto von Guericke’, 39106 Magdeburg, Germany
| |
Collapse
|
19
|
Wilde D, Krämer A, Reith D, Foysi H. Semi-Lagrangian lattice Boltzmann method for compressible flows. Phys Rev E 2020; 101:053306. [PMID: 32575305 DOI: 10.1103/physreve.101.053306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
This work thoroughly investigates a semi-Lagrangian lattice Boltzmann (SLLBM) solver for compressible flows. In contrast to other LBM for compressible flows, the vertices are organized in cells, and interpolation polynomials up to fourth order are used to attain the off-vertex distribution function values. Differing from the recently introduced Particles on Demand (PoD) method [Dorschner, Bösch, and Karlin, Phys. Rev. Lett. 121, 130602 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.130602], the method operates in a static, nonmoving reference frame. Yet the SLLBM in the present formulation grants supersonic flows and exhibits a high degree of Galilean invariance. The SLLBM solver allows for an independent time step size due to the integration along characteristics and for the use of unusual velocity sets, like the D2Q25, which is constructed by the roots of the fifth-order Hermite polynomial. The properties of the present model are shown in diverse example simulations of a two-dimensional Taylor-Green vortex, a Sod shock tube, a two-dimensional Riemann problem, and a shock-vortex interaction. It is shown that the cell-based interpolation and the use of Gauss-Lobatto-Chebyshev support points allow for spatially high-order solutions and minimize the mass loss caused by the interpolation. Transformed grids in the shock-vortex interaction show the general applicability to nonuniform grids.
Collapse
Affiliation(s)
- Dominik Wilde
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, D-57076 Siegen-Weidenau, Germany
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, D-53757 Sankt Augustin, Germany
| | - Andreas Krämer
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dirk Reith
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, D-53757 Sankt Augustin, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
| | - Holger Foysi
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, D-57076 Siegen-Weidenau, Germany
| |
Collapse
|
20
|
Asadi MB, De Rosis A, Zendehboudi S. Central-Moments-Based Lattice Boltzmann for Associating Fluids: A New Integrated Approach. J Phys Chem B 2020; 124:2900-2913. [PMID: 32017560 DOI: 10.1021/acs.jpcb.9b10989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic and thermodynamic behaviors of associating fluids play a crucial role in various science and engineering disciplines. Cubic plus association equation of state (CPA EOS) is implemented in a central-moments-based lattice Boltzmann method (LBM) in order to mimic the thermodynamic behavior of associating fluids. The pseudopotential approach is selected to model the multiphase thermodynamic characteristics such as reduced density of associating fluids. The priority of central-moments-based approach over multiple-relaxation-time collision operator is highlighted by performing double shear layers. The integration of central-moments-based LBM and CPA EOS is useful to simulate the dynamic and thermodynamic characteristics of associating fluids at high flow rate conditions, which is extended to high-density ratio scenarios by increasing the anisotropy order of gradient operator. In order to increase the stability of the model, a higher anisotropy order of the gradient operator is implemented; about 34 present reduction in spurious velocities is noticed in some cases. The type of gradient operator considerably affects the model thermodynamic consistency. Finally, the model is validated by observing a straight line in the Laplace law test. Prediction of thermodynamic behaviors of associating fluids is of significance in various applications including biological processes as well as fluid flow in porous media.
Collapse
Affiliation(s)
- Mohammad Bagher Asadi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Alessandro De Rosis
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Sohrab Zendehboudi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
21
|
Wissocq G, Boussuge JF, Sagaut P. Consistent vortex initialization for the athermal lattice Boltzmann method. Phys Rev E 2020; 101:043306. [PMID: 32422768 DOI: 10.1103/physreve.101.043306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2020] [Indexed: 11/07/2022]
Abstract
A barotropic counterpart of the well-known convected vortex test case is rigorously derived from the Euler equations along with an athermal equation of state. Starting from a given velocity distribution corresponding to an intended flow recirculation, the athermal counterpart of the Euler equations are solved to obtain a consistent density field. The present initialization is assessed on a standard lattice Boltzmann solver based on the D2Q9 lattice. Compared to the usual isentropic initialization, a much lower spurious relaxation toward the targeted solution is observed, which is due to the spatial resolution rather than approximated macroscopic quantities. The amplitude of the spurious waves can be further reduced by including an off-equilibrium part in the initial distribution functions.
Collapse
Affiliation(s)
- Gauthier Wissocq
- CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse cedex, France.,Safran Aircraft Engines, 77550 Moissy-Cramayel, France
| | | | - Pierre Sagaut
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451 Marseille, France
| |
Collapse
|
22
|
Hosseini SA, Coreixas C, Darabiha N, Thévenin D. Extensive analysis of the lattice Boltzmann method on shifted stencils. Phys Rev E 2020; 100:063301. [PMID: 31962484 DOI: 10.1103/physreve.100.063301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Indexed: 11/07/2022]
Abstract
Standard lattice Boltzmann methods (LBMs) are based on a symmetric discretization of the phase space, which amounts to study the evolution of particle distribution functions (PDFs) in a reference frame at rest. This choice induces a number of limitations when the simulated flow speed gets closer to the sound speed, such as velocity-dependent transport coefficients. The latter issue is usually referred to as a Galilean invariance defect. To restore the Galilean invariance of LBMs, it was proposed to study the evolution of PDFs in a comoving reference frame by relying on asymmetric shifted lattices [N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. Lett. 117, 010604 (2016)].PRLTAO0031-900710.1103/PhysRevLett.117.010604 From the numerical viewpoint, this corresponds to overcoming the rather restrictive Courant-Friedrichs-Lewy conditions on standard LBMs and modeling compressible flows while keeping memory consumption and processing costs to a minimum (therefore using the standard first-neighbor stencils). In the present work systematic physical error evaluations and stability analyses are conducted for different discrete equilibrium distribution functions (EDFs) and collision models. Thanks to them, it is possible to (1) better understand the effect of this solution on both physics and stability, (2) assess its viability as a way to extend the validity range of LBMs, and (3) quantify the importance of the reference state as compared to other parameters such as the equilibrium state and equilibration path. The results clearly show that, in theory, the concept of shifted lattices allows the scheme to deal with arbitrarily high values of the nondimensional velocity. Furthermore, just like the zero-Mach flow for the standard stencils, it is observed that setting the shift velocity to the fluid velocity results in optimal physical and numerical properties. In addition, a detailed analysis of the obtained results shows that the properties of different collision models and EDFs remain unchanged under the shift of stencil. In other words, by introducing a velocity shift in the stencil, the optimal operating point, in terms of physics and numerics, will also be shifted by the same vector regardless of the EDF or collision model considered. Eventually, while limited to the D2Q9 stencil with the nine possible first-neighbor shifts, the present study and corresponding conclusions can be extended to other stencils and velocity shifts in a straightforward manner.
Collapse
Affiliation(s)
- S A Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany.,Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette Cedex, France.,International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering, Magdeburg, Germany
| | - C Coreixas
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - N Darabiha
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette Cedex, France
| | - D Thévenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany
| |
Collapse
|
23
|
Shan X. Central-moment-based Galilean-invariant multiple-relaxation-time collision model. Phys Rev E 2019; 100:043308. [PMID: 31771023 DOI: 10.1103/physreve.100.043308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Indexed: 11/07/2022]
Abstract
Aiming at systematically correcting the non-Galilean-invariant thermal diffusivity in the previous multiple-relaxation-time Boltzmann equation collision model [Shan and Chen, Int. J. Mod. Phys. C 18, 635 (2007)IJMPEO0129-183110.1142/S0129183107010887], we show that by separately relaxing the central moments of the distribution function, Chapman-Enskog calculation leads to the correct hydrodynamic equations with mutually independent and Galilean invariant viscosity and thermal diffusivity, provided the velocity-space discretization preserves moments up to the fourth order. By transforming the central moments back to the absolute reference frame and evaluating using fixed discrete velocities, the efficient and accurate streaming-collision time-stepping algorithm is preserved. The lattice Boltzmann model is found to have excellent numerical stability in high-Reynolds-number simulations.
Collapse
Affiliation(s)
- Xiaowen Shan
- Shenzhen Key Laboratory of Complex Aerospace Flows, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
24
|
Krämer A, Wilde D, Küllmer K, Reith D, Foysi H. Pseudoentropic derivation of the regularized lattice Boltzmann method. Phys Rev E 2019; 100:023302. [PMID: 31574640 DOI: 10.1103/physreve.100.023302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/07/2022]
Abstract
The lattice Boltzmann method (LBM) facilitates efficient simulations of fluid turbulence based on advection and collision of local particle distribution functions. To ensure stable simulations on underresolved grids, the collision operator must prevent drastic deviations from local equilibrium. This can be achieved by various methods, such as the multirelaxation time, entropic, quasiequilibrium, regularized, and cumulant schemes. Complementing a part of a unified theoretical framework of these schemes, the present work presents a derivation of the regularized lattice Boltzmann method (RLBM), which follows a recently introduced entropic multirelaxation time LBM by Karlin, Bösch, and Chikatamarla (KBC). It is shown that both methods can be derived by locally maximizing a quadratic Taylor expansion of the entropy function. While KBC expands around the local equilibrium distribution, the RLBM is recovered by expanding entropy around a global equilibrium. Numerical tests were performed to elucidate the role of pseudoentropy maximization in these models. Simulations of a two-dimensional shear layer show that the RLBM successfully reproduces the largest eddies even on a 16×16 grid, while the conventional LBM becomes unstable for grid resolutions of 128×128 and lower. The RLBM suppresses spurious vortices more effectively than KBC. In contrast, simulations of the three-dimensional Taylor-Green and Kida vortices show that KBC performs better in resolving small scale vortices, outperforming the RLBM by a factor of 1.8 in terms of the effective Reynolds number.
Collapse
Affiliation(s)
- Andreas Krämer
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dominik Wilde
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| | - Knut Küllmer
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| | - Dirk Reith
- Institute of Technology, Resource and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.,Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Holger Foysi
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| |
Collapse
|
25
|
Li X, Shi Y, Shan X. Temperature-scaled collision process for the high-order lattice Boltzmann model. Phys Rev E 2019; 100:013301. [PMID: 31499796 DOI: 10.1103/physreve.100.013301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 11/07/2022]
Abstract
We postulate that the relaxations of the distribution function in the lattice Boltzmann model should be self-similar under temperature scaling. Based on this postulation, a multiple-relaxation-time collision model in the relative, temperature-scaled reference frame is devised with Hermite expansion. Resorting to the relation between the Hermite basis with the temperature-scaled relative velocity and the Hermite basis with the raw velocity, the relaxations in the temperature-scaled reference frame can be converted to those in the raw reference frame with some correction terms to eliminate the cross-talk effects among the relaxations of different orders. The highest-order nonequilibrium relative central moment is filtered due to the insufficient discrerization in the velocity space. The highest-order collision term can be recursively obtained from the lower-order collision terms. The improved performance is validated by the double shear layer flow, shock tube flow, and the Taylor-Green vortex flow.
Collapse
Affiliation(s)
- Xuhui Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yangyang Shi
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaowen Shan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
26
|
Coreixas C, Chopard B, Latt J. Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations. Phys Rev E 2019; 100:033305. [PMID: 31639944 DOI: 10.1103/physreve.100.033305] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 05/05/2023]
Abstract
Over the last decades, several types of collision models have been proposed to extend the validity domain of the lattice Boltzmann method (LBM), each of them being introduced in its own formalism. This article proposes a formalism that describes all these methods within a common mathematical framework, and in this way allows us to draw direct links between them. Here, the focus is put on single and multirelaxation time collision models in either their raw moment, central moment, cumulant, or regularized form. In parallel with that, several bases (nonorthogonal, orthogonal, Hermite) are considered for the polynomial expansion of populations. General relationships between moments are first derived to understand how moment spaces are related to each other. In addition, a review of collision models further sheds light on collision models that can be rewritten in a linear matrix form. More quantitative mathematical studies are then carried out by comparing explicit expressions for the post-collision populations. Thanks to this, it is possible to deduce the impact of both the polynomial basis (raw, Hermite, central, central Hermite, cumulant) and the inclusion of regularization steps on isothermal LBMs. Extensive results are provided for the D1Q3, D2Q9, and D3Q27 lattices, the latter being further extended to the D3Q19 velocity discretization. Links with the most common two and multirelaxation time collision models are also provided for the sake of completeness. This work ends by emphasizing the importance of an accurate representation of the equilibrium state, independently of the choice of moment space. As an addition to the theoretical purpose of this article, general instructions are provided to help the reader with the implementation of the most complicated collision models.
Collapse
Affiliation(s)
- Christophe Coreixas
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - Bastien Chopard
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| | - Jonas Latt
- Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
| |
Collapse
|
27
|
Hosseini SA, Coreixas C, Darabiha N, Thévenin D. Stability of the lattice kinetic scheme and choice of the free relaxation parameter. Phys Rev E 2019; 99:063305. [PMID: 31330723 DOI: 10.1103/physreve.99.063305] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 11/07/2022]
Abstract
The lattice kinetic scheme (LKS), a modified version of the classical single relaxation time (SRT) lattice Boltzmann method, was initially developed as a suitable numerical approach for non-Newtonian flow simulations and a way to reduce memory consumption of the original SRT approach. The better performances observed for non-Newtonian flows are mainly due to the additional degree of freedom allowing an independent control over the relaxation of higher-order moments, independently from the fluid viscosity. Although widely applied to fluid flow simulations, no theoretical analysis of LKS has been performed. The present work focuses on a systematic von Neumann analysis of the linearized collision operator. Thanks to this analysis, the effects of the modified collision operator on the stability domain and spectral behavior of the scheme are clarified. Results obtained in this study show that correct choices of the "second relaxation coefficient" lead, to a certain extent, to a more consistent dispersion and dissipation for large values of the first relaxation coefficient. Furthermore, appropriate values of this parameter can lead to a larger linear stability domain. At moderate and low values of viscosity, larger values of the free parameter are observed to increase dissipation of kinetic modes, while leaving the acoustic modes untouched and having a less pronounced effect on the convective mode. This increased dissipation leads in general to less pronounced sources of nonlinear instability, thus improving the stability of the LKS.
Collapse
Affiliation(s)
- S A Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany.,Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France.,International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering, Magdeburg, Germany
| | - C Coreixas
- Department of Computer Science, University of Geneva, Geneva, Switzerland
| | - N Darabiha
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France
| | - D Thévenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany
| |
Collapse
|
28
|
Hosseini SA, Darabiha N, Thévenin D. Theoretical and numerical analysis of the lattice kinetic scheme for complex-flow simulations. Phys Rev E 2019; 99:023305. [PMID: 30934293 DOI: 10.1103/physreve.99.023305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 11/07/2022]
Abstract
The lattice kinetic scheme (LKS) is a modified version of the classical single relaxation time lattice Boltzmann method. Although used for many applications, especially when large variations in viscosity are involved, a thorough analysis of the scheme has not been provided yet. In the context of this work, the macroscopic behavior of this scheme is evaluated through the Chapman-Enskog analysis. It is shown that the additional degree of freedom provided in the scheme allows for an independent control of higher-order moments. These results are further corroborated by numerical simulations. The behavior of this numerical scheme is studied for selected external and internal flows to clarify the effect of the free parameter on the different moments of the distribution function. It is shown that it is more stable than SRT (single relaxation time) when confronted to fully periodic under-resolved simulations (especially for λ≈1). It can also help minimize the error coming from the viscosity-dependence of the wall position when combined with the bounce-back approach; although still present, viscosity-dependence of the wall position is reduced. Furthermore, as shown through the multiscale analysis, specific choices of the free parameter can cancel out the leading-order error. Overall, the LKS is shown to be a useful and efficient alternative to the SRT method for simulating numerically complex flows.
Collapse
Affiliation(s)
- S A Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", D-39106 Magdeburg, Germany.,Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France.,International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering, Magdeburg 39106, Germany
| | - N Darabiha
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France
| | - D Thévenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", D-39106 Magdeburg, Germany
| |
Collapse
|
29
|
De Rosis A, Luo KH. Role of higher-order Hermite polynomials in the central-moments-based lattice Boltzmann framework. Phys Rev E 2019; 99:013301. [PMID: 30780257 DOI: 10.1103/physreve.99.013301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 06/09/2023]
Abstract
The cascaded lattice Boltzmann method decomposes the collision stage on a basis of central moments on which the equilibrium state is assumed equal to that of the continuous Maxwellian distribution. Such a relaxation process is usually considered as an assumption, which is then justified a posteriori by showing the enhanced Galilean invariance of the resultant algorithm. An alternative method is to relax central moments to the equilibrium state of the discrete second-order truncated distribution. In this paper, we demonstrate that relaxation to the continuous Maxwellian distribution is equivalent to the discrete counterpart if higher-order (up to sixth) Hermite polynomials are used to construct the equilibrium when the D3Q27 lattice velocity space is considered. Therefore, a theoretical a priori justification of the choice of the continuous distribution is formally provided for the first time.
Collapse
Affiliation(s)
- Alessandro De Rosis
- Electric Ant Lab B.V., Science Park 400, NL-1098 XH Amsterdam, The Netherlands
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
30
|
Dorschner B, Bösch F, Karlin IV. Particles on Demand for Kinetic Theory. PHYSICAL REVIEW LETTERS 2018; 121:130602. [PMID: 30312073 DOI: 10.1103/physrevlett.121.130602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/03/2018] [Indexed: 05/22/2023]
Abstract
A novel formulation of fluid dynamics as a kinetic theory with tailored, on-demand constructed particles removes restrictions on flow speed and temperature as compared to its predecessors, the lattice Boltzmann methods and their modifications. In the new kinetic theory, discrete particles are determined by a rigorous limit process which avoids ad hoc assumptions about their velocities. Classical benchmarks for incompressible and compressible flows demonstrate that the proposed discrete-particles kinetic theory opens up an unprecedented wide domain of applications for computational fluid dynamics.
Collapse
Affiliation(s)
- B Dorschner
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - F Bösch
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - I V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
31
|
Huang R, Wu H, Adams NA. Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow. Phys Rev E 2018; 97:053308. [PMID: 29906992 DOI: 10.1103/physreve.97.053308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 06/08/2023]
Abstract
It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated. With this technique, the computational simplicity of the pseudopotential LB model is well maintained. Numerical tests, including stationary and moving flat and circular interface problems, are carried out to show the effects of such cubic terms on the simulation of multiphase flow. It is found that the elimination of additional cubic terms is beneficial to reduce the numerical error, especially when the velocity is relatively large. Numerical results also suggest that these cubic terms mainly take effect in the interfacial region and that the density-gradient-related cubic terms are more important than the other cubic terms for multiphase flow.
Collapse
Affiliation(s)
- Rongzong Huang
- Institute of Aerodynamics and Fluid Mechanics, Technical University of Munich, 85748 Garching, Germany
- School of Mechanical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Huiying Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Nikolaus A Adams
- Institute of Aerodynamics and Fluid Mechanics, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|