1
|
Newby E, Shi W, Jiao Y, Albert R, Torquato S. Structural properties of hyperuniform Voronoi networks. Phys Rev E 2025; 111:034123. [PMID: 40247535 DOI: 10.1103/physreve.111.034123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
Disordered hyperuniform many-particle systems are recently discovered exotic states of matter, characterized by the complete suppression of normalized infinite-wavelength density fluctuations, as in perfect crystals, while lacking conventional long-range order, as in liquids and glasses. In this work, we begin a program to quantify the structural properties of nonhyperuniform and hyperuniform networks. In particular, large two-dimensional (2D) Voronoi networks (graphs) containing approximately 10,000 nodes are created from a variety of different point configurations, including the antihyperuniform hyperplane intersection process (HIP), nonhyperuniform Poisson process, nonhyperuniform random sequential addition (RSA) saturated packing, and both non-stealthy and stealthy hyperuniform point processes. We carry out an extensive study of the Voronoi-cell area distribution of each of the networks by determining multiple metrics that characterize the distribution, including their average areas and corresponding variances as well as higher-order cumulants (i.e., skewness γ_{1} and excess kurtosis γ_{2}). We show that the HIP distribution is far from Gaussian, as evidenced by a high skewness (γ_{1}=3.16) and large positive excess kurtosis (γ_{2}=16.2). The Poisson (with γ_{1}=1.07 and γ_{2}=1.79) and non-stealthy hyperuniform (with γ_{1}=0.257 and γ_{2}=0.0217) distributions are Gaussian-like distributions, since they exhibit a small but positive skewness and excess kurtosis. The RSA (with γ_{1}=0.450 and γ_{2}=-0.0384) and the highest stealthy hyperuniform distributions (with γ_{1}=0.0272 and γ_{2}=-0.0626) are also non-Gaussian because of their low skewness and negative excess kurtosis, which is diametrically opposite of the non-Gaussian behavior of the HIP. The fact that the cell-area distributions of large, finite-sized RSA and stealthy hyperuniform networks (e.g., with N≈10,000 nodes) are narrower, have larger peaks, and smaller tails than a Gaussian distribution implies that in the thermodynamic limit the distributions should exhibit compact support, consistent with previous theoretical considerations. Moreover, we compute the Voronoi-area correlation functions C_{00}(r) for the networks, which describe the correlations between the area of two Voronoi cells separated by a given distance r [M. A. Klatt and S. Torquato, Phys. Rev. E 90, 052120 (2014)1539-375510.1103/PhysRevE.90.052120]. We show that the correlation functions C_{00}(r) qualitatively distinguish the antihyperuniform, nonhyperuniform, and hyperuniform Voronoi networks considered here. Specifically, the antihyperuniform HIP networks possess a slowly decaying C_{00}(r) with large positive values, indicating large fluctuations of Voronoi cell areas across scales. While the nonhyperuniform Poisson and RSA network possess positive and fast decaying C_{00}(r), we find strong anticorrelations in C_{00}(r) (i.e., negative values) for the hyperuniform networks. The latter indicates that the large-scale area fluctuations are suppressed by accompanying large Voronoi cells with small cells (and vice versa) in the systems in order to achieve hyperuniformity. In summary, we have shown that cell-area distributions and pair correlation functions of Voronoi networks enable one to distinguish quantitatively antihyperuniform, standard nonhyperuniform, and hyperuniform networks from one another.
Collapse
Affiliation(s)
- Eli Newby
- Pennsylvania State University, Department of Physics, University Park, Pennsylvania 16802, USA
| | - Wenlong Shi
- Arizona State University, Materials Science and Engineering, Tempe, Arizona 85287, USA
| | - Yang Jiao
- Arizona State University, Materials Science and Engineering, Tempe, Arizona 85287, USA
- Arizona State University, Department of Physics, Tempe, Arizona 85287, USA
| | - Reka Albert
- Pennsylvania State University, Department of Physics, University Park, Pennsylvania 16802, USA
| | - Salvatore Torquato
- Princeton University, Department of Chemistry, Princeton, New Jersey 08544, USA
- Princeton University, Department of Physics, Princeton, New Jersey 08544, USA
- Princeton University, Princeton Institute of Materials, Princeton, New Jersey 08544, USA
- Princeton University, Program in Applied and Computational Mathematics, Princeton, New Jersey 08544, USA
| |
Collapse
|
2
|
Shi W, Jiao Y, Torquato S. Three-dimensional construction of hyperuniform, nonhyperuniform, and antihyperuniform disordered heterogeneous materials and their transport properties via spectral density functions. Phys Rev E 2025; 111:035310. [PMID: 40247492 DOI: 10.1103/physreve.111.035310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Rigorous theories connecting physical properties of a heterogeneous material to its microstructure offer a promising avenue to guide the computational material design and optimization. The spectral density function χ[over ̃]_{_{V}}(k), which can be obtained experimentally from scattering data, enables accurate determination of various transport and wave propagation characteristics, including the time-dependent diffusion spreadability S(t) and effective dynamic dielectric constant ε_{e} for electromagnetic wave propagation. Moreover, χ[over ̃]_{_{V}}(k) determines rigorous upper bounds on the fluid permeability K. Given the importance of χ[over ̃]_{_{V}}(k), we present here an efficient Fourier-space based computational framework to construct three-dimensional (3D) statistically isotropic two-phase heterogeneous materials corresponding to targeted spectral density functions. In particular, we employ a variety of analytical functional forms for χ[over ̃]_{_{V}}(k) that satisfy all known necessary conditions to construct disordered stealthy hyperuniform, standard hyperuniform, nonhyperuniform, and antihyperuniform two-phase heterogeneous material systems at varying phase volume fractions. We show that by tuning the correlations in the system across length scales via the targeted functions, one can generate a rich spectrum of distinct structures within each of the above classes of materials. Importantly, we present the first realization of antihyperuniform two-phase heterogeneous materials in 3D, which are characterized by autocovariance function χ_{_{V}}(r) with a power-law tail, resulting in microstructures that contain clusters of dramatically different sizes and morphologies. We also determine the diffusion spreadability S(t) and estimate the fluid permeability K associated with all of the constructed materials directly from the corresponding spectral densities. Although it is well established that the long-time asymptotic scaling behavior of S(t) only depends on the functional form of χ[over ̃]_{_{V}}(k), with the stealthy hyperuniform and antihyperuniform media, respectively, achieving the most and least efficient transport, we find that varying the length-scale parameter within each class of χ[over ̃]_{_{V}}(k) functions can also lead to orders of magnitude variation of S(t) at intermediate and long time scales. Moreover, we find that increasing the solid volume fraction ϕ_{1} and correlation length a in the constructed media generally leads to a decrease in the dimensionless fluid permeability K/a^{2}, while the antihyperuniform media possess the largest K/a^{2} among the four classes of materials with the same ϕ_{1} and a. These results indicate the feasibility of employing parameterized spectral densities for designing composites with targeted transport properties.
Collapse
Affiliation(s)
- Wenlong Shi
- Arizona State University, Materials Science and Engineering, Tempe, Arizona 85287, USA
| | - Yang Jiao
- Arizona State University, Materials Science and Engineering, Tempe, Arizona 85287, USA
- Arizona State University, Department of Physics, Tempe, Arizona 85287, USA
| | - Salvatore Torquato
- Princeton University, Department of Chemistry, Princeton, New Jersey 08544, USA
- Princeton University, Department of Physics, Princeton, New Jersey 08544, USA
- Princeton University, Princeton Institute of Materials, Princeton, New Jersey 08544, USA
- Princeton University, Program in Applied and Computational Mathematics, Princeton, New Jersey 08544, USA
| |
Collapse
|
3
|
Chen D, Samajdar R, Jiao Y, Torquato S. Anomalous suppression of large-scale density fluctuations in classical and quantum spin liquids. Proc Natl Acad Sci U S A 2025; 122:e2416111122. [PMID: 39918949 PMCID: PMC11831143 DOI: 10.1073/pnas.2416111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/05/2025] [Indexed: 02/09/2025] Open
Abstract
Classical spin liquids (CSLs) are intriguing states of matter that do not exhibit long-range magnetic order and are characterized by an extensive ground-state degeneracy. Adding quantum fluctuations, which induce dynamics between these different classical ground states, can give rise to quantum spin liquids (QSLs). QSLs are highly entangled quantum phases of matter characterized by fascinating emergent properties, such as fractionalized excitations and topological order. One such exotic quantum liquid is the [Formula: see text] QSL, which can be regarded as a resonating valence bond (RVB) state formed from superpositions of dimer coverings of an underlying lattice. In this work, we unveil a hidden large-scale structural property of archetypal CSLs and QSLs known as hyperuniformity, i.e., normalized infinite-wavelength density fluctuations are completely suppressed in these systems. In particular, we first demonstrate that classical ensembles of close-packed dimers and their corresponding quantum RVB states are perfectly hyperuniform in general. Subsequently, we focus on a ruby-lattice spin liquid that was recently realized in a Rydberg-atom quantum simulator, and show that the QSL remains effectively hyperuniform even in the presence of a finite density of spinon and vison excitations, as long as the dimer constraint is still largely preserved. Moreover, we demonstrate that metrics based on the framework of hyperuniformity can be used to distinguish the QSL from other proximate quantum phases. These metrics can help identify potential QSL candidates, which can then be further analyzed using more advanced, computationally intensive quantum numerics to confirm their status as true QSLs.
Collapse
Affiliation(s)
- Duyu Chen
- Materials Research Laboratory, University of California, Santa Barbara, CA93106
| | - Rhine Samajdar
- Department of Physics, Princeton University, Princeton, NJ08544
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ08544
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ85287
- Department of Physics, Arizona State University, Tempe, AZ85287
| | - Salvatore Torquato
- Department of Physics, Princeton University, Princeton, NJ08544
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Princeton Materials Institute, Princeton University, Princeton, NJ08540
- Program in Applied and Computational Mathematics, Princeton, NJ08544
| |
Collapse
|
4
|
Liu Y, Chen D, Tian J, Xu W, Jiao Y. Universal Hyperuniform Organization in Looped Leaf Vein Networks. PHYSICAL REVIEW LETTERS 2024; 133:028401. [PMID: 39073952 DOI: 10.1103/physrevlett.133.028401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/06/2024] [Indexed: 07/31/2024]
Abstract
The leaf vein network is a hierarchical vascular system that transports water and nutrients to the leaf cells. The thick primary veins form a branched network, while the secondary veins can develop closed loops forming a well-defined cellular structure. Through extensive analysis of a variety of distinct leaf species, we discover that the apparently disordered cellular structures of the secondary vein networks exhibit a universal hyperuniform organization and possess a hidden order on large scales. Disorder hyperuniform systems lack conventional long-range order, yet they completely suppress normalized infinite-wavelength density fluctuations like crystals. Specifically, we find that the distributions of the geometric centers associated with the vein network loops possess a vanishing static structure factor in the limit that the wave number k goes to 0, i.e., S(k)∼k^{α}, where α≈0.64±0.021, providing an example of class III hyperuniformity in biology. This hyperuniform organization leads to superior efficiency of diffusive transport, as evidenced by the much faster convergence of the time-dependent spreadability S(t) to its longtime asymptotic limit, compared to that of other uncorrelated or correlated disordered but nonhyperuniform organizations. Our results also have implications for the discovery and design of novel disordered network materials with optimal transport properties.
Collapse
Affiliation(s)
| | | | | | - Wenxiang Xu
- Institute of Solid Mechanics, College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, People's Republic of China
| | | |
Collapse
|
5
|
Zhuang H, Chen D, Liu L, Keeney D, Zhang G, Jiao Y. Vibrational properties of disordered stealthy hyperuniform 1D atomic chains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:285703. [PMID: 38579735 DOI: 10.1088/1361-648x/ad3b5c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Disorder hyperuniformity is a recently discovered exotic state of many-body systems that possess a hidden order in between that of a perfect crystal and a completely disordered system. Recently, this novel disordered state has been observed in a number of quantum materials including amorphous 2D graphene and silica, which are endowed with unexpected electronic transport properties. Here, we numerically investigate 1D atomic chain models, including perfect crystalline, disordered stealthy hyperuniform (SHU) as well as randomly perturbed atom packing configurations to obtain a quantitative understanding of how the unique SHU disorder affects the vibrational properties of these low-dimensional materials. We find that the disordered SHU chains possess lower cohesive energies compared to the randomly perturbed chains, implying their potential reliability in experiments. Our inverse partition ratio (IPR) calculations indicate that the SHU chains can support fully delocalized states just like perfect crystalline chains over a wide range of frequencies, i.e.ω∈(0,100)cm-1, suggesting superior phonon transport behaviors within these frequencies, which was traditionally considered impossible in disordered systems. Interestingly, we observe the emergence of a group of highly localized states associated withω∼200cm-1, which is characterized by a significant peak in the IPR and a peak in phonon density of states at the corresponding frequency, and is potentially useful for decoupling electron and phonon degrees of freedom. These unique properties of disordered SHU chains have implications in the design and engineering of novel quantum materials for thermal and phononic applications.
Collapse
Affiliation(s)
- Houlong Zhuang
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - Duyu Chen
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, United States of America
| | - Lei Liu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - David Keeney
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - Ge Zhang
- Department of Physics, City University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Yang Jiao
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
- Department of Physics, Arizona State University, Tempe, AZ 85287, United States of America
| |
Collapse
|
6
|
Lavrukhin EV, Karsanina MV, Gerke KM. Measuring structural nonstationarity: The use of imaging information to quantify homogeneity and inhomogeneity. Phys Rev E 2023; 108:064128. [PMID: 38243461 DOI: 10.1103/physreve.108.064128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Heterogeneity is the concept we encounter in numerous research areas and everyday life. While "not mixing apples and oranges" is easy to grasp, a more quantitative approach to such segregation is not always readily available. Consider the problem from a different angle: To what extent does one have to make apples more orange and oranges more "apple-shaped" to put them into the same basket (according to their appearance alone)? This question highlights the central problem of the blurred interface between heterogeneous and homogeneous, which also depends on the metrics used for its identification. This work uncovers the physics of structural stationarity quantification, based on correlation functions (CFs) and clustering based on CFs different between image subregions. By applying the methodology to a wide variety of synthetic and real images of binary porous media, we confirmed computationally that only periodically unit-celled structures and images produced by stationary processes with resolutions close to infinity are strictly stationary. Natural structures without recurring unit cells are only weakly stationary. We established a physically meaningful definition for these stationarity types and their distinction from nonstationarity. In addition, the importance of information content of the chosen metrics is highlighted and discussed. We believe the methodology as proposed in this contribution will find its way into numerous research areas dealing with materials, structures, and measurements and modeling based on structural imaging information.
Collapse
Affiliation(s)
- Efim V Lavrukhin
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 123242, Russia; Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow 119991, Russia; and Dokuchaev Soil Science Institute, Moscow 119017, Russia
| | - Marina V Karsanina
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 123242, Russia
| | - Kirill M Gerke
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 123242, Russia
| |
Collapse
|
7
|
Shi W, Keeney D, Chen D, Jiao Y, Torquato S. Computational design of anisotropic stealthy hyperuniform composites with engineered directional scattering properties. Phys Rev E 2023; 108:045306. [PMID: 37978628 DOI: 10.1103/physreve.108.045306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
Disordered hyperuniform materials are an emerging class of exotic amorphous states of matter that endow them with singular physical properties, including large isotropic photonic band gaps, superior resistance to fracture, and nearly optimal electrical and thermal transport properties, to name but a few. Here we generalize the Fourier-space-based numerical construction procedure for designing and generating digital realizations of isotropic disordered hyperuniform two-phase heterogeneous materials (i.e., composites) developed by Chen and Torquato [Acta Mater. 142, 152 (2018)1359-645410.1016/j.actamat.2017.09.053] to anisotropic microstructures with targeted spectral densities. Our generalized construction procedure explicitly incorporates the vector-dependent spectral density function χ[over ̃]_{_{V}}(k) of arbitrary form that is realizable. We demonstrate the utility of the procedure by generating a wide spectrum of anisotropic stealthy hyperuniform microstructures with χ[over ̃]_{_{V}}(k)=0 for k∈Ω, i.e., complete suppression of scattering in an "exclusion" region Ω around the origin in Fourier space. We show how different exclusion-region shapes with various discrete symmetries, including circular-disk, elliptical-disk, square, rectangular, butterfly-shaped, and lemniscate-shaped regions of varying size, affect the resulting statistically anisotropic microstructures as a function of the phase volume fraction. The latter two cases of Ω lead to directionally hyperuniform composites, which are stealthy hyperuniform only along certain directions and are nonhyperuniform along others. We find that while the circular-disk exclusion regions give rise to isotropic hyperuniform composite microstructures, the directional hyperuniform behaviors imposed by the shape asymmetry (or anisotropy) of certain exclusion regions give rise to distinct anisotropic structures and degree of uniformity in the distribution of the phases on intermediate and large length scales along different directions. Moreover, while the anisotropic exclusion regions impose strong constraints on the global symmetry of the resulting media, they can still possess structures at a local level that are nearly isotropic. Both the isotropic and anisotropic hyperuniform microstructures associated with the elliptical-disk, square, and rectangular Ω possess phase-inversion symmetry over certain range of volume fractions and a percolation threshold ϕ_{c}≈0.5. On the other hand, the directionally hyperuniform microstructures associated with the butterfly-shaped and lemniscate-shaped Ω do not possess phase-inversion symmetry and percolate along certain directions at much lower volume fractions. We also apply our general procedure to construct stealthy nonhyperuniform systems. Our construction algorithm enables one to control the statistical anisotropy of composite microstructures via the shape, size, and symmetries of Ω, which is crucial to engineering directional optical, transport, and mechanical properties of two-phase composite media.
Collapse
Affiliation(s)
- Wenlong Shi
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - David Keeney
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Duyu Chen
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Institute of Materials, Princeton University, Princeton, New Jersey 08544, USA
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
8
|
Gao Y, Jiao Y, Liu Y. Ultraefficient reconstruction of effectively hyperuniform disordered biphase materials via non-Gaussian random fields. Phys Rev E 2022; 105:045305. [PMID: 35590629 DOI: 10.1103/physreve.105.045305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Disordered hyperuniform systems are statistically isotropic and possess no Bragg peaks like liquids and glasses, yet they suppress large-scale density fluctuations in a similar manner as in perfect crystals. The unique hyperuniform long-range order in these systems endow them with nearly optimal transport, electronic, and mechanical properties. The concept of hyperuniformity was originally introduced for many-particle systems and has subsequently been generalized to biphase heterogeneous materials such as porous media, composites, polymers, and biological tissues for unconventional property discovery. Existing methods for rendering realizations of disordered hyperuniform biphase materials reconstruction typically employ stochastic optimization such as the simulated annealing approach, which requires many iterations. Here, we propose an explicit ultraefficient method for reconstructing effectively hyperuniform biphase materials, based on the second-order non-Gaussian random fields where no additional tuning step or iteration is needed. Both the effectively hyperuniform microstructure and the latent material property field can be simultaneously generated in a single reconstruction. Moreover, our method can also incorporate hierarchical uncertainties in the heterogeneous materials, including both uncertainties in the disordered material microstructure and material property variation within each phase. The efficiency and feasibility of the proposed reconstruction method are demonstrated via a wide spectrum of examples spanning from isotropic to anisotropic, effectively hyperuniform to nonhyperuniform, and antihyperuniform systems. Our ultraefficient reconstruction method can be readily incorporated into material design, probabilistic analysis, optimization, and discovery of novel disordered hyperuniform heterogeneous materials.
Collapse
Affiliation(s)
- Yi Gao
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, USA
| | - Yang Jiao
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, USA
| | - Yongming Liu
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, USA
| |
Collapse
|
9
|
Chen PE, Raghavan R, Zheng Y, Li H, Ankit K, Jiao Y. Quantifying microstructural evolution via time-dependent reduced-dimension metrics based on hierarchical n-point polytope functions. Phys Rev E 2022; 105:025306. [PMID: 35291075 DOI: 10.1103/physreve.105.025306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
We devise reduced-dimension metrics for effectively measuring the distance between two points (i.e., microstructures) in the microstructure space and quantifying the pathway associated with microstructural evolution, based on a recently introduced set of hierarchical n-point polytope functions P_{n}. The P_{n} functions provide the probability of finding particular n-point configurations associated with regular n polytopes in the material system, and are a special subset of the standard n-point correlation functions S_{n} that effectively decompose the structural features in the system into regular polyhedral basis with different symmetries. The nth order metric Ω_{n} is defined as the L_{1} norm associated with the P_{n} functions of two distinct microstructures. By choosing a reference initial state (i.e., a microstructure associated with t_{0}=0), the Ω_{n}(t) metrics quantify the evolution of distinct polyhedral symmetries and can in principle capture emerging polyhedral symmetries that are not apparent in the initial state. To demonstrate their utility, we apply the Ω_{n} metrics to a two-dimensional binary system undergoing spinodal decomposition to extract the phase separation dynamics via the temporal scaling behavior of the corresponding Ω_{n}(t), which reveals mechanisms governing the evolution. Moreover, we employ Ω_{n}(t) to analyze pattern evolution during vapor deposition of phase-separating alloy films with different surface contact angles, which exhibit rich evolution dynamics including both unstable and oscillating patterns. The Ω_{n} metrics have potential applications in establishing quantitative processing-structure-property relationships, as well as real-time processing control and optimization of complex heterogeneous material systems.
Collapse
Affiliation(s)
- Pei-En Chen
- Mechanical and Aerospace Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Rahul Raghavan
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Hechao Li
- Mechanical and Aerospace Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Kumar Ankit
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
10
|
Kim J, Torquato S. Characterizing the hyperuniformity of ordered and disordered two-phase media. Phys Rev E 2021; 103:012123. [PMID: 33601605 DOI: 10.1103/physreve.103.012123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/24/2020] [Indexed: 11/07/2022]
Abstract
The hyperuniformity concept provides a unified means to classify all perfect crystals, perfect quasicrystals, and exotic amorphous states of matter according to their capacity to suppress large-scale density fluctuations. While the classification of hyperuniform point configurations has received considerable attention, much less is known about the classification of hyperuniform two-phase heterogeneous media, which include composites, porous media, foams, cellular solids, colloidal suspensions, and polymer blends. The purpose of this article is to begin such a program for certain two-dimensional models of hyperuniform two-phase media by ascertaining their local volume-fraction variances σ_{_{V}}^{2}(R) and the associated hyperuniformity order metrics B[over ¯]_{V}. This is a highly challenging task because the geometries and topologies of the phases are generally much richer and more complex than point-configuration arrangements, and one must ascertain a broadly applicable length scale to make key quantities dimensionless. Therefore, we purposely restrict ourselves to a certain class of two-dimensional periodic cellular networks as well as periodic and disordered or irregular packings of circular disks, some of which maximize their effective transport and elastic properties. Among the cellular networks considered, the honeycomb networks have minimal values of the hyperuniformity order metrics B[over ¯]_{V} across all volume fractions. On the other hand, for all packings of circular disks examined, the triangular-lattice packings have the smallest values of B[over ¯]_{V} for the possible range of volume fractions. Among all structures studied here, the triangular-lattice packing of circular disks have the minimal values of the order metric for almost all volume fractions. Our study provides a theoretical foundation for the establishment of hyperuniformity order metrics for general two-phase media and a basis to discover new hyperuniform two-phase systems with desirable bulk physical properties by inverse design procedures.
Collapse
Affiliation(s)
- Jaeuk Kim
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA; and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
11
|
Chen D, Zheng Y, Liu L, Zhang G, Chen M, Jiao Y, Zhuang H. Stone-Wales defects preserve hyperuniformity in amorphous two-dimensional networks. Proc Natl Acad Sci U S A 2021; 118:e2016862118. [PMID: 33431681 PMCID: PMC7826391 DOI: 10.1073/pnas.2016862118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disordered hyperuniformity (DHU) is a recently discovered novel state of many-body systems that possesses vanishing normalized infinite-wavelength density fluctuations similar to a perfect crystal and an amorphous structure like a liquid or glass. Here, we discover a hyperuniformity-preserving topological transformation in two-dimensional (2D) network structures that involves continuous introduction of Stone-Wales (SW) defects. Specifically, the static structure factor [Formula: see text] of the resulting defected networks possesses the scaling [Formula: see text] for small wave number k, where [Formula: see text] monotonically decreases as the SW defect concentration p increases, reaches [Formula: see text] at [Formula: see text], and remains almost flat beyond this p. Our findings have important implications for amorphous 2D materials since the SW defects are well known to capture the salient feature of disorder in these materials. Verified by recently synthesized single-layer amorphous graphene, our network models reveal unique electronic transport mechanisms and mechanical behaviors associated with distinct classes of disorder in 2D materials.
Collapse
Affiliation(s)
- Duyu Chen
- Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213;
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | - Lei Liu
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287
| | - Ge Zhang
- Department of Physics, University of Pennsylvania, Philadelphia, PA 19104
| | - Mohan Chen
- Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, People's Republic of China;
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287;
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | - Houlong Zhuang
- Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
12
|
Lomba E, Weis JJ, Guisández L, Torquato S. Minimal statistical-mechanical model for multihyperuniform patterns in avian retina. Phys Rev E 2020; 102:012134. [PMID: 32794939 DOI: 10.1103/physreve.102.012134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 11/07/2022]
Abstract
Birds are known for their extremely acute sense of vision. The very peculiar structural distribution of five different types of cones in the retina underlies this exquisite ability to sample light. It was recently found that each cone population as well as their total population display a disordered pattern in which long-wavelength density fluctuations vanish [Jiao et al., Phys. Rev. E 89, 022721 (2014)PLEEE81539-375510.1103/PhysRevE.89.022721]. This property, known as hyperuniformity, is also present in perfect crystals. In situations like the avian retina in which both the global structure and that of each component display hyperuniformity, the system is said to be multihyperuniform. In this work, we aim at devising a minimal statistical-mechanical model that can reproduce the main features of the spatial distribution of photoreceptors in avian retina, namely the presence of disorder, multihyperuniformity, and local heterocoordination. This last feature is key to avoiding local clustering of the same type of photoreceptors, an undesirable feature for the efficient sampling of light. For this purpose, we formulate a minimal statistical-mechanical model that definitively exhibits the required structural properties: an equimolar three-component mixture (one component to sample each primary color: red, green, and blue) of nonadditive hard disks to which a long-range logarithmic repulsion is added between like particles. Interestingly, a Voronoi analysis of our idealized system of photoreceptors shows that the space-filling Voronoi polygons display a rather uniform area distribution, symmetrically centered around that of a regular lattice, a structural property also found in human retina. Disordered multihyperuniformity offers an alternative to generate photoreceptor patterns with minimal long-range concentration and density fluctuations. This is the key to overcoming the difficulties in devising an efficient visual system in which crystal-like order is absent.
Collapse
Affiliation(s)
- Enrique Lomba
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid, Spain
| | - Jean-Jacques Weis
- Université de Paris-Saclay, Laboratoire de Physique Théorique, Bâtiment 210, 91405 Orsay Cedex, France
| | - Leandro Guisández
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid, Spain.,IFLYSIB (UNLP, CONICET), 59 No. 789, B1900BTE La Plata, Argentina
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.,Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
13
|
Chremos A. Design of nearly perfect hyperuniform polymeric materials. J Chem Phys 2020; 153:054902. [PMID: 32770903 PMCID: PMC7530914 DOI: 10.1063/5.0017861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 01/18/2023] Open
Abstract
Disordered hyperuniform materials are exotic amorphous systems that simultaneously exhibit anomalous suppression of long-range density fluctuations, comparable in amplitude to that of crystals and quasi-crystalline materials, while lacking the translational order characteristic of simple liquids. We establish a framework to quantitatively predict the emergence of hyperuniformity in polymeric materials by considering the distribution of localized polymer subregions, instead of considering the whole material. We demonstrate that this highly tunable approach results in arbitrarily small long-range density fluctuations in the liquid state. Our simulations also indicate that long-ranged density fluctuation of the whole polymeric material is remarkably insensitive to molecular topology (linear chain, unknotted ring, star, and bottlebrush) and depends on temperature in an apparently near universal fashion. Our findings open the way for the creation of nearly perfect hyperuniform polymeric materials.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
14
|
Gerke KM, Karsanina MV, Katsman R. Calculation of tensorial flow properties on pore level: Exploring the influence of boundary conditions on the permeability of three-dimensional stochastic reconstructions. Phys Rev E 2019; 100:053312. [PMID: 31869888 DOI: 10.1103/physreve.100.053312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 06/10/2023]
Abstract
While it is well known that permeability is a tensorial property, it is usually reported as a scalar property or only diagonal values are reported. However, experimental evaluation of tensorial flow properties is problematic. Pore-scale modeling using three-dimensional (3D) images of porous media with subsequent upscaling to a continuum scale (homogenization) is a valuable alternative. In this study, we explore the influence of different types of boundary conditions on the external walls of the representative modeling domain along the applied pressure gradient on the magnitude and orientation of the computed permeability tensor. To implement periodic flow boundary conditions, we utilized stochastic reconstruction methodology to create statistically similar (to real porous media structures) geometrically periodic 3D structures. Stochastic reconstructions are similar to encapsulation of the porous media into statistically similar geometrically periodic one with the same permeability tensor. Seven main boundary conditions (BC) were implemented: closed walls, periodic flow, slip on the walls, linear pressure, translation, symmetry, and immersion. The different combinations of BCs amounted to a total number of 15 BC variations. All these BCs significantly influenced the resulting tensorial permeabilities, including both magnitude and orientation. Periodic boundary conditions produced the most physical flow patterns, while other classical BCs either suppressed crucial transversal flows or resulted in unphysical currents. Our results are crucial to performing flow properties upscaling and will be relevant to computing not only single-phase but also multiphase flow properties. Moreover, other calculation of physical properties such as some mechanical, transport, or heat conduction properties may benefit from the technique described in this study.
Collapse
Affiliation(s)
- Kirill M Gerke
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 107031, Russia
- Institute of Geospheres Dynamics of Russian Academy of Sciences, Moscow 119334, Russia
- Dokuchaev Soil Science Institute of Russian Academy of Sciences, Moscow 119017, Russia
- Kazan Federal University, Kazan 420008, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Marina V Karsanina
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 107031, Russia
- Institute of Geospheres Dynamics of Russian Academy of Sciences, Moscow 119334, Russia
| | - Regina Katsman
- Department of Marine Geosciences, Haifa University, Haifa 3498838, Israel
| |
Collapse
|
15
|
Meyra AG, Zarragoicoechea GJ, Maltz AL, Lomba E, Torquato S. Hyperuniformity on spherical surfaces. Phys Rev E 2019; 100:022107. [PMID: 31574707 DOI: 10.1103/physreve.100.022107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/07/2022]
Abstract
We study and characterize local density fluctuations of ordered and disordered hyperuniform point distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina, actually occur on curved surfaces. Here we will focus on the local particle number variance and its dependence on the size of the sampling window (which we take to be a spherical cap) for regular and uniform point distributions, as well as for equilibrium configurations of fluid particles interacting through Lennard-Jones, dipole-dipole, and charge-charge potentials. We show that the scaling of the local number variance as a function of the window size enables one to characterize hyperuniform and nonhyperuniform point patterns also on spherical surfaces.
Collapse
Affiliation(s)
- Ariel G Meyra
- IFLYSIB (UNLP, CONICET), 59 No. 789, B1900BTE La Plata, Argentina.,Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid, Spain
| | - Guillermo J Zarragoicoechea
- IFLYSIB (UNLP, CONICET), 59 No. 789, B1900BTE La Plata, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina
| | - Alberto L Maltz
- Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 72 Correo Central 1900 La Plata, Argentina
| | - Enrique Lomba
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid, Spain
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.,Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
16
|
Ma Z, Torquato S. Hyperuniformity of generalized random organization models. Phys Rev E 2019; 99:022115. [PMID: 30934260 DOI: 10.1103/physreve.99.022115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 11/07/2022]
Abstract
Studies of random organization models of monodisperse (i.e., identical) spherical particles have shown that a hyperuniform state is achievable when the system goes through an absorbing phase transition to a critical state. Here we investigate to what extent hyperuniformity is preserved when the model is generalized to particles with a size distribution and/or nonspherical shapes. We begin by examining binary disks in two dimensions and demonstrate that their critical states are hyperuniform as two-phase media, but not hyperuniform nor multihyperuniform as point patterns formed by the particle centroids. We further confirm the generality of our findings by studying particles with a continuous size distribution. Finally, to study the effect of rotational degrees of freedom, we extend our model to noncircular particles, namely, hard rectangles with various aspect ratios, including the hard-needle limit. Although these systems exhibit only short-range orientational order, hyperuniformity is still preserved. Our analysis reveals that the redistribution of the "mass" of the particles rather than the particle centroids is central to this dynamical process. The consideration of the "active volume fraction" of generalized random organization models may help to resolve which universality class they belong to and hence may lead to a deeper theoretical understanding of absorbing-state models. Our results suggest that general particle systems subject to random organization can be a robust way to fabricate a wide class of hyperuniform states of matter by tuning the structures via different particle-size and -shape distributions. This in turn potentially enables the creation of multifunctional hyperuniform materials with desirable optical, transport, and mechanical properties.
Collapse
Affiliation(s)
- Zheng Ma
- Department of Physics, Princeton University and Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
17
|
Karsanina MV, Gerke KM. Hierarchical Optimization: Fast and Robust Multiscale Stochastic Reconstructions with Rescaled Correlation Functions. PHYSICAL REVIEW LETTERS 2018; 121:265501. [PMID: 30636118 DOI: 10.1103/physrevlett.121.265501] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 06/09/2023]
Abstract
Stochastic reconstructions based on universal correlation functions allow obtaining spatial structures based on limited input data or to fuse multiscale images from different sources. Current application of such techniques is severely hampered by the computational cost of the annealing optimization procedure. In this study we propose a novel hierarchical annealing method based on rescaled correlation functions, which improves both accuracy and computational efficiency of reconstructions while not suffering from disadvantages of existing speeding-up techniques. A significant order of magnitude gains in computational efficiency now allows us to add more correlation functions into consideration and, thus, to further improve the accuracy of the method. In addition, the method provides a robust multiscale framework to solve the universal upscaling or downscaling problem. The novel algorithm is extensively tested on binary (two-phase) microstructures of different genesis. In spite of significant improvements already in place, the current implementation of the hierarchical annealing method leaves significant room for additional accuracy and computational performance tweaks. As described here, (multiscale) stochastic reconstructions will find numerous applications in material and Earth sciences. Moreover, the proposed hierarchical approach can be readily applied to a wide spectrum of constrained optimization problems.
Collapse
Affiliation(s)
- Marina V Karsanina
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 107031, Russia
- Institute of Geospheres Dynamics of Russian Academy of Sciences, Moscow 119334, Russia
| | - Kirill M Gerke
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 107031, Russia
- Institute of Geospheres Dynamics of Russian Academy of Sciences, Moscow 119334, Russia
- Dokuchaev Soil Science Institute of Russian Academy of Sciences, Moscow 119017, Russia
- Kazan Federal University, Kazan 420008, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
18
|
Chremos A, Douglas JF. Hidden Hyperuniformity in Soft Polymeric Materials. PHYSICAL REVIEW LETTERS 2018; 121:258002. [PMID: 30608782 DOI: 10.1103/physrevlett.121.258002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 06/09/2023]
Abstract
We investigate the nature of long-range density fluctuations in melts of model "soft" polymers, specifically stars and bottlebrushes, over a wide temperature range by molecular dynamics simulation. The cores of the stars and the backbones of bottlebrush polymers are found to have a hyperuniform distribution; i.e., they exhibit anomalously small density fluctuations over a wide temperature range above the glass transition temperature. The hyperuniformity of these substituent polymer subregions is hidden since the fluid as a whole does not exhibit this property. These findings offer a strategy for the practical design of hyperuniform polymeric materials.
Collapse
Affiliation(s)
- Alexandros Chremos
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
19
|
Torquato S, Chen D. Multifunctional hyperuniform cellular networks: optimality, anisotropy and disorder. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/2399-7532/aaca91] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Quantification of the influences of aggregate shape and sampling method on the overestimation of ITZ thickness in cementitious materials. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Chen D, Lomba E, Torquato S. Binary mixtures of charged colloids: a potential route to synthesize disordered hyperuniform materials. Phys Chem Chem Phys 2018; 20:17557-17562. [DOI: 10.1039/c8cp02616e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new route to fabricate large samples of 2D disordered hyperuniform materials via self-assembly of mixtures of charged colloids.
Collapse
Affiliation(s)
- Duyu Chen
- Department of Chemistry
- Princeton University, Princeton
- USA
| | - Enrique Lomba
- Department of Chemistry
- Princeton University, Princeton
- USA
- Instituto de Química Física Rocasolano
- CSIC
| | - Salvatore Torquato
- Department of Chemistry
- Princeton University, Princeton
- USA
- Department of Physics
- Princeton University
| |
Collapse
|
22
|
Lomba E, Weis JJ, Torquato S. Disordered hyperuniformity in two-component nonadditive hard-disk plasmas. Phys Rev E 2017; 96:062126. [PMID: 29347400 DOI: 10.1103/physreve.96.062126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Indexed: 06/07/2023]
Abstract
We study the behavior of a classical two-component ionic plasma made up of nonadditive hard disks with additional logarithmic Coulomb interactions between them. Due to the Coulomb repulsion, long-wavelength total density fluctuations are suppressed and the system is globally hyperuniform. Short-range volume effects lead to phase separation or to heterocoordination for positive or negative nonadditivities, respectively. These effects compete with the hidden long-range order imposed by hyperuniformity. As a result, the critical behavior of the mixture is modified, with long-wavelength concentration fluctuations partially damped when the system is charged. It is also shown that the decrease of configurational entropy due to hyperuniformity originates from contributions beyond the two-particle level. Finally, despite global hyperuniformity, we show that in our system the spatial configuration associated with each component separately is not hyperuniform, i.e., the system is not "multihyperuniform."
Collapse
Affiliation(s)
- Enrique Lomba
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid, Spain
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Jean-Jacques Weis
- Université de Paris-Sud, Laboratoire de Physique Théorique, UMR8627, Bâtiment 210, 91405 Orsay Cedex, France
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|