1
|
Quispe Haro JJ, Chen F, Los R, Shi S, Sun W, Chen Y, Idema T, Wegner SV. Optogenetic Control of Bacterial Cell-Cell Adhesion Dynamics: Unraveling the Influence on Biofilm Architecture and Functionality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310079. [PMID: 38613837 PMCID: PMC11187914 DOI: 10.1002/advs.202310079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The transition of bacteria from an individualistic to a biofilm lifestyle profoundly alters their biology. During biofilm development, the bacterial cell-cell adhesions are a major determinant of initial microcolonies, which serve as kernels for the subsequent microscopic and mesoscopic structure of the biofilm, and determine the resulting functionality. In this study, the significance of bacterial cell-cell adhesion dynamics on bacterial aggregation and biofilm maturation is elucidated. Using photoswitchable adhesins between bacteria, modifying the dynamics of bacterial cell-cell adhesions with periodic dark-light cycles is systematic. Dynamic cell-cell adhesions with liquid-like behavior improve bacterial aggregation and produce more compact microcolonies than static adhesions with solid-like behavior in both experiments and individual-based simulations. Consequently, dynamic cell-cell adhesions give rise to earlier quorum sensing activation, better intermixing of different bacterial populations, improved biofilm maturation, changes in the growth of cocultures, and higher yields in fermentation. The here presented approach of tuning bacterial cell-cell adhesion dynamics opens the door for regulating the structure and function of biofilms and cocultures with potential biotechnological applications.
Collapse
Affiliation(s)
- Juan José Quispe Haro
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
| | - Fei Chen
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
| | - Rachel Los
- Department of BionanoscienceKavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Shuqi Shi
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Wenjun Sun
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Yong Chen
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Timon Idema
- Department of BionanoscienceKavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
| |
Collapse
|
2
|
Khandoori R, Mondal K, Ghosh P. Resource limitation and population fluctuation drive spatiotemporal order in microbial communities. SOFT MATTER 2024; 20:3823-3835. [PMID: 38647378 DOI: 10.1039/d4sm00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Microbial communities display complex spatiotemporal behaviors leading to spatially-structured and ordered organization driven by species interactions and environmental factors. Resource availability plays a pivotal role in shaping the dynamics of bacterial colonies. In this study, we delve into the intricate interplay between resource limitation and the emergent properties of a growing colony of two visually distinct bacterial strains having similar growth and mechanical properties. Employing an agent-based modeling and computer simulations, we analyze the resource-driven effect on segregation and sectoring, cell length regulation and nematic ordering within a growing colony. We introduce a dimensionless parameter referred to as the active layer thickness, derived from nutrient diffusion equations, indicating effective population participation due to local resource availability. Our results reveal that lower values of active layer thickness arising from decreased resource abundance lead to rougher colony fronts, fostering heightened population fluctuations within the colony and faster spatial genetic diversity loss. Our temporal analyses unveil the dynamics of mean cell length and fluctuations, showcasing how initial disturbances evolve as colonies are exposed to nutrients and subsequently settle. Furthermore, examining microscopic details, we find that lower resource levels yield diverse cell lengths and enhanced nematic ordering, driven by the increased prevalence of longer rod-shaped cells. Our investigation sheds light on the multifaceted relationship between resource constraints and bacterial colony dynamics, revealing insights into their spatiotemporal organization.
Collapse
Affiliation(s)
- Rohit Khandoori
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
| | - Kaustav Mondal
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Pushpita Ghosh
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
3
|
Bera P, Wasim A, Ghosh P. Interplay of cell motility and self-secreted extracellular polymeric substance induced depletion effects on spatial patterning in a growing microbial colony. SOFT MATTER 2023; 19:8136-8149. [PMID: 37847026 DOI: 10.1039/d3sm01144e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Reproducing bacteria self-organize to develop patterned biofilms in various conditions. Various factors contribute to the shaping of a multicellular bacterial organization. Here we investigate how motility force and self-secreted extracellular polymeric substances (EPS) influence bacterial cell aggregation, leading to phase-separated colonies using a particle-based/individual-based model. Our findings highlight the critical role of the interplay between motility force and depletion effects in regulating phase separation within a growing colony under far-from-equilibrium conditions. We observe that increased motility force hinders depletion-induced cell aggregation and phase segregation, necessitating a higher depletion effect for highly motile bacteria to undergo phase separation within a growing biofilm. We present a phase diagram illustrating the systematic variation of motility force and repulsive mechanical force, shedding light on the combined contributions of these two factors: self-propulsive motion and aggregation due to the depletion effect, resulting in the presence of small to large bacterial aggregates. Furthermore, our study reveals the dynamic nature of clustering, marked by changes in cluster size over time. Additionally, our findings suggest that differential dispersion among the components can lead to the localization of EPS at the periphery of a growing colony. Our study enhances the understanding of the collective dynamics of motile bacterial cells within a growing colony, particularly in the presence of a self-secreted polymer-driven depletion effect.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Abdul Wasim
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Pushpita Ghosh
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
4
|
Ghosh C, Ghosh S, Chatterjee A, Bera P, Mampallil D, Ghosh P, Das D. Dual enzyme-powered chemotactic cross β amyloid based functional nanomotors. Nat Commun 2023; 14:5903. [PMID: 37737223 PMCID: PMC10516904 DOI: 10.1038/s41467-023-41301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future, specifically in emergent biomedical techniques. Herein, cross β amyloid peptide-based nanomotors (amylobots) were prepared from short amyloid peptides. Owing to their remarkable binding capabilities, these soft constructs are able to host dedicated enzymes to catalyze orthogonal substrates for motility and navigation. Urease helps in powering the self-diffusiophoretic motion, while cytochrome C helps in providing navigation control. Supported by the simulation model, the design principle demonstrates the utilization of two distinct transport behaviours for two different types of enzymes, firstly enhanced diffusivity of urease with increasing fuel (urea) concentration and secondly, chemotactic motility of cytochrome C towards its substrate (pyrogallol). Dual catalytic engines allow the amylobots to be utilized for enhanced catalysis in organic solvent and can thus complement the technological applications of enzymes.
Collapse
Affiliation(s)
- Chandranath Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| | - Souvik Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| | - Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| | - Palash Bera
- Tata Institute of Fundamental Research (TIFR), Hyderabad, Telangana, 500046, India
| | - Dileep Mampallil
- Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Mangalam, Andhra Pradesh, 517507, India
| | - Pushpita Ghosh
- School of Chemistry, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala, 695551, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
5
|
Jian X, Guo X, Cai Z, Wei L, Wang L, Xing XH, Zhang C. Single-cell microliter-droplet screening system (MISS Cell): An integrated platform for automated high-throughput microbial monoclonal cultivation and picking. Biotechnol Bioeng 2023; 120:778-792. [PMID: 36477904 DOI: 10.1002/bit.28300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Solid plates have been used for microbial monoclonal isolation, cultivation, and colony picking since 1881. However, the process is labor- and resource-intensive for high-throughput requirements. Currently, several instruments have been integrated for automated and high-throughput picking, but complicated and expensive. To address these issues, we report a novel integrated platform, the single-cell microliter-droplet screening system (MISS Cell), for automated, high-throughput microbial monoclonal colony cultivation and picking. We verified the monoclonality of droplet cultures in the MISS Cell and characterized culture performance. Compared with solid plates, the MISS Cell generated a larger number of monoclonal colonies with higher initial growth rates using fewer resources. Finally, we established a workflow for automated high-throughput screening of Corynebacterium glutamicum using the MISS Cell and identified high glutamate-producing strains. The MISS Cell can serve as a universal platform to efficiently produce monoclonal colonies in high-throughput applications, overcoming the limitations of solid plates to promote rapid development in biotechnology.
Collapse
Affiliation(s)
- Xingjin Jian
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Xiaojie Guo
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Zhengshuo Cai
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Longfeng Wei
- College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Liyan Wang
- Luoyang TMAXTREE Biotechnology Co., Ltd., Luoyang, China
| | - Xin-Hui Xing
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Chong Zhang
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Bera P, Wasim A, Ghosh P. A mechanistic understanding of microcolony morphogenesis: coexistence of mobile and sessile aggregates. SOFT MATTER 2023; 19:1034-1045. [PMID: 36648295 DOI: 10.1039/d2sm01365g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Most bacteria in the natural environment self-organize into collective phases such as cell clusters, swarms, patterned colonies, or biofilms. Several intrinsic and extrinsic factors, such as growth, motion, and physicochemical interactions, govern the occurrence of different phases and their coexistence. Hence, predicting the conditions under which a collective phase emerges due to individual-level interactions is crucial. Here we develop a particle-based biophysical model of bacterial cells and self-secreted extracellular polymeric substances (EPS) to decipher the interplay of growth, motility-mediated dispersal, and mechanical interactions during microcolony morphogenesis. We show that the microcolony dynamics and architecture significantly vary depending upon the heterogeneous EPS production. In particular, microcolony shows the coexistence of both motile and sessile aggregates rendering a transition towards biofilm formation. We identified that the interplay of differential dispersion and the mechanical interactions among the components of the colony determines the fate of the colony morphology. Our results provide a significant understanding of the mechano-self-regulation during biofilm morphogenesis and open up possibilities of designing experiments to test the predictions.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Telangana, 500046, India
| | - Abdul Wasim
- Tata Institute of Fundamental Research Hyderabad, Telangana, 500046, India
| | - Pushpita Ghosh
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
7
|
Bera P, Wasim A, Mondal J, Ghosh P. Mechanistic underpinning of cell aspect ratio-dependent emergent collective motions in swarming bacteria. SOFT MATTER 2021; 17:7322-7331. [PMID: 34286783 DOI: 10.1039/d1sm00311a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-propelled bacteria can exhibit a large variety of non-equilibrium self-organized phenomena. Swarming is one such fascinating dynamical scenario where a number of motile individuals group into dynamical clusters and move in synchronized flows and vortices. While precedent investigations into rod-like particles confirm that an increased aspect-ratio promotes alignment and order, recent experimental studies in bacteria Bacillus subtilis show a non-monotonic dependence of the cell-aspect ratio on their swarming motion. Here, by computer simulations of an agent-based model of self-propelled, mechanically interacting, rod-shaped bacteria under overdamped conditions, we explore the collective dynamics of a bacterial swarm subjected to a variety of cell-aspect ratios. When modeled with an identical self-propulsion speed across a diverse range of cell aspect ratios, simulations demonstrate that both shorter and longer bacteria exhibit slow dynamics whereas the fastest speed is obtained at an intermediate aspect ratio. Our investigation highlights that the origin of this observed non-monotonic trend of bacterial speed and vorticity with the cell-aspect ratio is rooted in the cell-size dependence of motility force. The swarming features remain robust for a wide range of surface density of the cells, whereas asymmetry in friction attributes a distinct effect. Our analysis identifies that at an intermediate aspect ratio, an optimum cell size and motility force promote alignment, which reinforces the mechanical interactions among neighboring cells leading to the overall fastest motion. Mechanistic underpinning of the collective motions reveals that it is a joint venture of the short-range repulsive and the size-dependent motility forces, which determines the characteristics of swarming.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India.
| | | | | | | |
Collapse
|
8
|
Zhdanov VP. Proliferation of cells with aggregation and communication. Math Biosci 2018; 301:32-36. [PMID: 29391191 DOI: 10.1016/j.mbs.2018.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
Cell proliferation is often considered to occur via front propagation with constant velocity. This scenario proposed by Fisher, Kolmogorov, Petrovsky, and Piskunov is based on the solution of the corresponding mean-field reaction-diffusion equations and does not take into account that due to adhesion the cells have tendency to aggregate and that the rate of cell division may depend on the cell-cell communication. Herein, the author presents extensive Monte Carlo simulations taking both these factors into account and illustrating that the former factor can dramatically modify the spatio-temporal kinetics of cell proliferation. In particular, the conventional relation between the front velocity and diffusion coefficient may fail, the front velocity may appreciably increase with increasing time, and/or the front may be partly or fully smeared on the realistic length scales.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|