1
|
Shibkov AA, Lebyodkin MA, Lebedkina TA, Gasanov MF, Zolotov AE, Denisov AA. Millisecond dynamics of deformation bands during discontinuous creep in an AlMg polycrystal. Phys Rev E 2020; 102:043003. [PMID: 33212699 DOI: 10.1103/physreve.102.043003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 11/07/2022]
Abstract
Formation of bands of macroscopic strain localization during staircase creep in an AlMg polycrystal is studied by the acoustic emission (AE) technique and high-speed video recording with an image acquisition rate up to 50 000 frames per second. The simultaneous measurements by two methods allow us to distinguish different types of embryo deformation bands and concomitant AE signals, and to establish correlations between the band evolution and the acoustic response. It is found that the fastest stages of band formation, associated with its emergence to the surface and subsequent accelerated expansion, generate complex AE bursts in the frequency band ∼0.05-1 MHz. The correlations hidden in the complex structure of an individual acoustic burst are investigated by methods of statistical and fractal analysis. On the other hand, relationships between average parameters of various physical responses to discontinuous creep are assessed. Particularly, a close correspondence is found between the envelope of the acoustic burst and the rate of stress change during formation of a single deformation band. Evolution of dynamical behavior of embryo bands with increasing creep stress is discussed. Notably, a qualitative change in the AE waveform observed on approaching the ultimate stress is considered from the viewpoint of anticipation of the oncoming fracture.
Collapse
Affiliation(s)
- A A Shibkov
- Physics Department, Tambov State University, Internationalnaya Street 33, 392000 Tambov, Russia
| | - M A Lebyodkin
- Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS, Université de Lorraine, Arts & Métiers ParisTech, 7 rue Félix Savart, 57070 Metz, France
| | - T A Lebedkina
- Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS, Université de Lorraine, Arts & Métiers ParisTech, 7 rue Félix Savart, 57070 Metz, France.,Institut de Recherche Technologique-Matériaux, Métallurgie et Procédés (IRT M2P), 4 rue Augustin Fresnel, 57070 Metz, France
| | - M F Gasanov
- Physics Department, Tambov State University, Internationalnaya Street 33, 392000 Tambov, Russia
| | - A E Zolotov
- Physics Department, Tambov State University, Internationalnaya Street 33, 392000 Tambov, Russia
| | - A A Denisov
- Physics Department, Tambov State University, Internationalnaya Street 33, 392000 Tambov, Russia
| |
Collapse
|
2
|
Shibkov AA, Gasanov MF, Zolotov AE, Denisov AA, Kochegarov SS, Koltsov RY. High-Speed In Situ Study of the Correlation between the Deformation Bands Formation and Acoustic Response in Al–Mg Alloy. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520040185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Abstract
Jerky flow in alloys, or the Portevin-Le Chatelier effect, presents an outstanding example of self-organization phenomena in plasticity. Recent acoustic emission investigations revealed that its microscopic dynamics is governed by scale invariance manifested as power-law statistics of intermittent events. As the macroscopic stress serrations show both scale invariance and characteristic scales, the micro-macro transition is an intricate question requiring an assessment of intermediate behaviors. The first attempt of such an investigation is undertaken in the present paper by virtue of a one-dimensional (1D) local extensometry technique and statistical analysis of time series. The data obtained complete the missing link and bear evidence to a coexistence of characteristic large events and power laws for smaller events. The scale separation is interpreted in terms of the phenomena of self-organized criticality and synchronization in complex systems. Furthermore, it is found that both the stress serrations and local strain-rate bursts agree with the so-called fluctuation scaling related to general mathematical laws and unifying various specific mechanisms proposed to explain scale invariance in diverse systems. Prospects of further investigations including the duality manifested by a wavy spatial organization of the local bursts of plastic deformation are discussed.
Collapse
|
4
|
Barés J, Bonamy D, Rosso A. Seismiclike organization of avalanches in a driven long-range elastic string as a paradigm of brittle cracks. Phys Rev E 2019; 100:023001. [PMID: 31574622 DOI: 10.1103/physreve.100.023001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 11/07/2022]
Abstract
Crack growth in heterogeneous materials sometimes exhibits crackling dynamics, made of successive impulselike events with specific scale-invariant time and size organization reminiscent of earthquakes. Here, we examine this dynamics in a model which identifies the crack front with a long-range elastic line driven in a random potential. We demonstrate that, under some circumstances, fracture grows intermittently, via scale-free impulse organized into aftershock sequences obeying the fundamental laws of statistical seismology. We examine the effects of the driving rate and system overall stiffness (unloading factor) onto the scaling exponents and cutoffs associated with the time and size organization. We unravel the specific conditions required to observe a seismiclike organization in the crack propagation problem. Beyond failure problems, implications of these results to other crackling systems are finally discussed.
Collapse
Affiliation(s)
- Jonathan Barés
- Laboratoire de Mécanique et Génie Civil, Université de Montpellier, CNRS, Montpellier, France
| | - Daniel Bonamy
- SPEC/SPHYNX, DSM/IRAMIS CEA Saclay, Bat. 772, F-91191 Gif-sur-Yvette, France
| | - Alberto Rosso
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
5
|
Song H, Dimiduk D, Papanikolaou S. Universality Class of Nanocrystal Plasticity: Localization and Self-Organization in Discrete Dislocation Dynamics. PHYSICAL REVIEW LETTERS 2019; 122:178001. [PMID: 31107061 DOI: 10.1103/physrevlett.122.178001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/19/2019] [Indexed: 06/09/2023]
Abstract
The universality class of the avalanche behavior in plastically deforming crystalline and amorphous systems has been commonly discussed, despite the fact that the microscopic defect character in each of these systems is different. In contrast to amorphous systems, crystalline flow stress increases dramatically at high strains and/or loading rates. We perform simulations of a two-dimensional discrete dislocation dynamics model that minimally captures the phenomenology of nanocrystalline deformation. In the context of this model, we demonstrate that a classic rate dependence of dislocation plasticity at large rates (>10^{3}/s) fundamentally controls the system's statistical character as it competes with dislocation nucleation: At large rates, the behavior is statistically dominated by long-range correlations of "dragged" mobile dislocations. At small rates, plasticity localization dominates in small volumes and a spatial integration of avalanche behavior takes place.
Collapse
Affiliation(s)
- Hengxu Song
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Dennis Dimiduk
- Department of Materials Science Engineering, Ohio State University, Columbus, Ohio 43210, USA
| | - Stefanos Papanikolaou
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, USA
- Department of Physics, West Virginia University, Morgantown, West Virginia 26506, USA
| |
Collapse
|
6
|
Acoustic Emission from Porous Collapse and Moving Dislocations in Granular Mg-Ho Alloys under Compression and Tension. Sci Rep 2019; 9:1330. [PMID: 30718551 PMCID: PMC6361990 DOI: 10.1038/s41598-018-37604-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022] Open
Abstract
We identified heterogeneous Mg-Ho alloys as an ideal material to measure the most extensive acoustic emission spectra available. Mg-Ho alloys are porous and show a high density of dislocations, which slide under external tension and compression. These dislocations nucleate near numerous heterogeneities. Two mechanisms compete under external forcing in the structural collapse, namely collapsing holes and the movements of dislocations. Their respective fingerprints in acoustic emission (AE) measurements are very different and relate to their individual signal strengths. Porous collapse generates very strong AE signals while dislocation movements create more but weaker AE signals. This allows the separation of the two processes even though they almost always coincide temporarily. The porous collapse follows approximately mean-field behavior (ε = 1.4, τ' = 1.82, α = 2.56, x = 1.93, χ = 1.95) with mean field scaling fulfilled. The exponents for dislocation movement are greater (ε = 1.92, τ' = 2.44, α = 3.0, x = 1.7, χ = 1.42) and follows approximately the force integrated mean-field predictions. The Omori scaling is similar for both mechanisms. The Bath's law is well fulfilled for the porous collapse but not for the dislocation movements. We suggest that such 'complex' mixing behavior is dominant in many other complex materials such as (multi-) ferroics, entropic alloys and porous ferroelastics, and, potentially, homogeneous materials with the simultaneous appearance of different collapse mechanisms.
Collapse
|
7
|
Acoustic Emission Characteristics During Rock Fragmentation Processes Induced by Disc Cutter under Different Water Content Conditions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9010194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on a properly modified testing platform and Physical Acoustics Corporation (PAC) Micro-II acoustic emission (AE) system, a series of sequential indentation tests on granite samples with five different water contents was conducted to investigate the effect of the water content on the rock fragmentation process induced by a tunnel boring machine (TBM) disc cutter. During these tests, the effects of the water content on the characteristics of the peak penetration force, AE events, consumed energy, rock chip volume, and specific energy were analyzed. The results showed that the AE events were associated with the whole second indentation process of the granite. Under conditions with the same water content, the peak penetration forces and the consumed energy were smaller than those in the first indentation force. Additionally, subsequent chips were formed more frequently than the first indentation chips. The specific energy was lower, which meant that the rock breaking efficiency was higher. With the increase in the water content, the acoustic emission events reduced. The peak penetration force and consumed energy decreased with the increase in the water content. The volume of the chips increased significantly as the water content increased. The specific energy was promoted by the increase of the water content and then by the increase in the rock-breaking efficiency of the TBM disc cutter.
Collapse
|
8
|
Complexity and Anisotropy of Plastic Flow of α-Ti Probed by Acoustic Emission and Local Extensometry. MATERIALS 2018; 11:ma11071061. [PMID: 29932438 PMCID: PMC6073693 DOI: 10.3390/ma11071061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/16/2018] [Accepted: 06/21/2018] [Indexed: 11/17/2022]
Abstract
Current progress in the prediction of mechanical behavior of solids requires understanding of spatiotemporal complexity of plastic flow caused by self-organization of crystal defects. It may be particularly important in hexagonal materials because of their strong anisotropy and combination of different mechanisms of plasticity, such as dislocation glide and twinning. These materials often display complex behavior even on the macroscopic scale of deformation curves, e.g., a peculiar three-stage elastoplastic transition, the origin of which is a matter of debates. The present work is devoted to a multiscale study of plastic flow in α-Ti, based on simultaneous recording of deformation curves, 1D local strain field, and acoustic emission (AE). It is found that the average AE activity also reveals three-stage behavior, but in a qualitatively different way depending on the crystallographic orientation of the sample axis. On the finer scale, the statistical analysis of AE events and local strain rates testifies to an avalanche-like character of dislocation processes, reflected in power-law probability distribution functions. The results are discussed from the viewpoint of collective dislocation dynamics and are confronted to predictions of a recent micromechanical model of Ti strain hardening.
Collapse
|