1
|
Xu Y, Ruan H, Luo S, Guo S, He X, Wang J. Enhancing Otto refrigerator performance with a precooling strategy. Phys Rev E 2025; 111:L022101. [PMID: 40103156 DOI: 10.1103/physreve.111.l022101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
The precooling strategy, which leads to exponentially faster heating, is a counterintuitive relaxation phenomenon wherein cooling the system before heating it dramatically shortens the relaxation time. We investigate the performance of a Markovian system functioning as an Otto refrigerator for a finite time, incorporating a precooling stage before the cyclic heating process. Our results demonstrate that precooling prior to the heating process in the Otto cycle optimizes the machine's performance by significantly enhancing the machine performance and the stability of the refrigerator.
Collapse
Affiliation(s)
- Yang Xu
- Nanchang University, Department of Physics, Nanchang 330031, China
| | - Huilin Ruan
- Nanchang University, Department of Physics, Nanchang 330031, China
| | - Shaolin Luo
- Nanchang University, Department of Physics, Nanchang 330031, China
| | - Shouhui Guo
- Nanchang University, Department of Physics, Nanchang 330031, China
| | - Xian He
- Nanchang University, Department of Physics, Nanchang 330031, China
| | - Jianhui Wang
- Nanchang University, Department of Physics, Nanchang 330031, China
- Fudan University, State Key Laboratory of Surface Physics and Department of Physics, Shanghai 200433, China
| |
Collapse
|
2
|
Gerstenmaier YC. Cyclic heat engines with nonisentropic adiabats and generalization to steady-state devices including thermoelectric converters. Phys Rev E 2022; 105:064136. [PMID: 35854556 DOI: 10.1103/physreve.105.064136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/06/2022] [Indexed: 11/07/2022]
Abstract
For heat engines (including refrigerators) the separation of total entropy production in reversible parts ΔS and irreversible contributions has proved to be very useful. The ΔS are entropies for ideal lossless processes at the hot- and cold side and are important system parameters. For Carnot-like heat engines performing finite-time cycles, the concern was raised in a preceding paper that the ΔS are not always independent from irreversibilities, if initial and final working fluid temperatures T_{f}(t) differ in the isothermal transitions. It turns out that the ΔS are unchanged and independent, if T_{f} (t) evolution is optimized for entropy minimization and apparent inconsistencies are cleared up. If nonisentropic transitions in the adiabatic cycle branches are taken into account, the difference of cold- and hot-side entropy reversibilities is equal to the entropy production in the adiabats. Maximization of cooling power is studied for various irreversible entropy models. The concepts are extended to noncyclic steady-state engines. Power maximization and efficiency calculations are performed exactly analytically. This serves as prerequisite for the hitherto unsolved problem of an accurate definition of reversible and irreversible entropy parts in thermoelectric (TE) converters in the case of inhomogeneous three-dimensional material distributions. It is revealed that for nonconstant Seebeck coefficients, additional terms to the Joule heat arise that destroy positive generator performance in the limit of heat conductance k→0, in contrast to the traditional constant material properties model. Thus, the concept of improving TE materials by reducing k is in question and an adapted figure of merit Z is presented to deal with the situation.
Collapse
|
3
|
Pérez-Gallego D, Gonzalez-Ayala J, Calvo Hernández A, Medina A. Thermodynamic Performance of a Brayton Pumped Heat Energy Storage System: Influence of Internal and External Irreversibilities. ENTROPY 2021; 23:e23121564. [PMID: 34945870 PMCID: PMC8700673 DOI: 10.3390/e23121564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022]
Abstract
A model for a pumped thermal energy storage system is presented. It is based on a Brayton cycle working successively as a heat pump and a heat engine. All the main irreversibility sources expected in real plants are considered: external losses arising from the heat transfer between the working fluid and the thermal reservoirs, internal losses coming from pressure decays, and losses in the turbomachinery. Temperatures considered for the numerical analysis are adequate for solid thermal reservoirs, such as a packed bed. Special emphasis is paid to the combination of parameters and variables that lead to physically acceptable configurations. Maximum values of efficiencies, including round-trip efficiency, are obtained and analyzed, and optimal design intervals are provided. Round-trip efficiencies of around 0.4, or even larger, are predicted. The analysis indicates that the physical region, where the coupled system can operate, strongly depends on the irreversibility parameters. In this way, maximum values of power output, efficiency, round-trip efficiency, and pumped heat might lay outside the physical region. In that case, the upper values are considered. The sensitivity analysis of these maxima shows that changes in the expander/turbine and the efficiencies of the compressors affect the most with respect to a selected design point. In the case of the expander, these drops are mostly due to a decrease in the area of the physical operation region.
Collapse
Affiliation(s)
- David Pérez-Gallego
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain; (D.P.-G.); (A.C.H.); (A.M.)
| | - Julian Gonzalez-Ayala
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain; (D.P.-G.); (A.C.H.); (A.M.)
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
- Correspondence:
| | - Antonio Calvo Hernández
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain; (D.P.-G.); (A.C.H.); (A.M.)
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - Alejandro Medina
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain; (D.P.-G.); (A.C.H.); (A.M.)
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
4
|
Wang T, Ge Y, Chen L, Feng H, Yu J. Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle. ENTROPY 2021; 23:e23101285. [PMID: 34682008 PMCID: PMC8534701 DOI: 10.3390/e23101285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Using finite-time thermodynamics, a model of an endoreversible Carnot cycle for a space power plant is established in this paper. The expressions of the cycle power output and thermal efficiency are derived. Using numerical calculations and taking the cycle power output as the optimization objective, the surface area distributions of three heat exchangers are optimized, and the maximum power output is obtained when the total heat transfer area of the three heat exchangers of the whole plant is fixed. Furthermore, the double-maximum power output is obtained by optimizing the temperature of a low-temperature heat sink. Finally, the influences of fixed plant parameters on the maximum power output performance are analyzed. The results show that there is an optimal temperature of the low-temperature heat sink and a couple of optimal area distributions that allow one to obtain the double-maximum power output. The results obtained have some guidelines for the design and optimization of actual space power plants.
Collapse
Affiliation(s)
- Tan Wang
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence:
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiuyang Yu
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
5
|
Gong Q, Ge Y, Chen L, Shi S, Feng H. Performance Analysis and Four-Objective Optimization of an Irreversible Rectangular Cycle. ENTROPY 2021; 23:e23091203. [PMID: 34573828 PMCID: PMC8471157 DOI: 10.3390/e23091203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Based on the established model of the irreversible rectangular cycle in the previous literature, in this paper, finite time thermodynamics theory is applied to analyze the performance characteristics of an irreversible rectangular cycle by firstly taking power density and effective power as the objective functions. Then, four performance indicators of the cycle, that is, the thermal efficiency, dimensionless power output, dimensionless effective power, and dimensionless power density, are optimized with the cycle expansion ratio as the optimization variable by applying the nondominated sorting genetic algorithm II (NSGA-II) and considering four-objective, three-objective, and two-objective optimization combinations. Finally, optimal results are selected through three decision-making methods. The results show that although the efficiency of the irreversible rectangular cycle under the maximum power density point is less than that at the maximum power output point, the cycle under the maximum power density point can acquire a smaller size parameter. The efficiency at the maximum effective power point is always larger than that at the maximum power output point. When multi-objective optimization is performed on dimensionless power output, dimensionless effective power, and dimensionless power density, the deviation index obtained from the technique for order preference by similarity to an ideal solution (TOPSIS) decision-making method is the smallest value, which means the result is the best.
Collapse
Affiliation(s)
- Qirui Gong
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuangshaung Shi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
6
|
Li Z, Cao H, Yang H, Guo J. Comparative Assessment of Various Low-Dissipation Combined Models for Three-Terminal Heat Pump Systems. ENTROPY (BASEL, SWITZERLAND) 2021; 23:513. [PMID: 33922628 PMCID: PMC8147089 DOI: 10.3390/e23050513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/27/2022]
Abstract
Thermally driven heat pump systems play important roles in the utilization of low-grade thermal energy. In order to evaluate and compare the performances of three different constructions of thermally driven heat pump and heat transformer, the low-dissipation assumption has been adopted to establish the irreversible thermodynamic models of them in the present paper. By means of the proposed models, the heating loads, the coefficients of performance (COPs) and the optimal relations between them for various constructions are derived and discussed. The performances of different constructions are numerically assessed. More importantly, according to the results obtained, the upper and lower bounds of the COP at maximum heating load for different constructions are generated and compared by the introduction of a parameter measuring the deviation from the reversible limit of the system. Accordingly, the optimal constructions for the low-dissipation three-terminal heat pump and heat transformer are determined within the frame of low-dissipation assumption, respectively. The optimal constructions in accord with previous research and engineering practices for various three-terminal devices are obtained, which confirms the compatibility between the low-dissipation model and endoreversible model and highlights the validity of the application of low-dissipation model for multi-terminal thermodynamic devices. The proposed models and the significant results obtained enrich the theoretical thermodynamic model of thermally driven heat pump systems and may provide some useful guidelines for the design and operation of realistic thermally driven heat pump systems.
Collapse
Affiliation(s)
| | | | | | - Juncheng Guo
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China; (Z.L.); (H.C.); (H.Y.)
| |
Collapse
|
7
|
Gerstenmaier YC. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency. Phys Rev E 2021; 103:032141. [PMID: 33862798 DOI: 10.1103/physreve.103.032141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/02/2021] [Indexed: 11/07/2022]
Abstract
Heat engines performing finite time Carnot cycles are described by positive irreversible entropy functions added to the ideal reversible entropy part. The model applies for macroscopic and microscopic (quantum mechanical) engines. The mathematical and physical conditions for the solution of the power maximization problem are discussed. For entropy models which have no reversible limit, the usual "linear response regime" is not mathematically feasible; i.e., the efficiency at maximum power cannot be expanded in powers of the Carnot efficiency. Instead, a physically less intuitive expansion in powers of the ratio of heat-reservoir temperatures holds under conditions that will be inferred. Exact solutions for generalized entropy models are presented, and results are compared. For entropy generation in endoreversible models, it is proved for all heat transfer laws with general temperature-dependent heat resistances, that minimum entropy production is achieved when the temperature of the working substance remains constant in the isothermal processes. For isothermal transition time t, entropy production then is of the form a/[tf(t)±c] and not just equal to a/t for the low-dissipation limit. The cold side endoreversible entropy as a function of transition times inevitably experiences singularities. For Newtonian heat transfer with temperature-independent heat conductances, the Curzon-Ahlborn efficiency is exactly confirmed, which-only in this unique case-shows "universality" in the sense of independence from dissipation ratios of the hot and cold sides with coinciding lower and upper efficiency bounds for opposite dissipation ratios. Extended exact solutions for inclusion of adiabatic transition times are presented.
Collapse
|
8
|
Optimization, Stability, and Entropy in Endoreversible Heat Engines. ENTROPY 2020; 22:e22111323. [PMID: 33287088 PMCID: PMC7711472 DOI: 10.3390/e22111323] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022]
Abstract
The stability of endoreversible heat engines has been extensively studied in the literature. In this paper, an alternative dynamic equations system was obtained by using restitution forces that bring the system back to the stationary state. The departing point is the assumption that the system has a stationary fixed point, along with a Taylor expansion in the first order of the input/output heat fluxes, without further specifications regarding the properties of the working fluid or the heat device specifications. Specific cases of the Newton and the phenomenological heat transfer laws in a Carnot-like heat engine model were analyzed. It was shown that the evolution of the trajectories toward the stationary state have relevant consequences on the performance of the system. A major role was played by the symmetries/asymmetries of the conductance ratio σhc of the heat transfer law associated with the input/output heat exchanges. Accordingly, three main behaviors were observed: (1) For small σhc values, the thermodynamic trajectories evolved near the endoreversible limit, improving the efficiency and power output values with a decrease in entropy generation; (2) for large σhc values, the thermodynamic trajectories evolved either near the Pareto front or near the endoreversible limit, and in both cases, they improved the efficiency and power values with a decrease in entropy generation; (3) for the symmetric case (σhc=1), the trajectories evolved either with increasing entropy generation tending toward the Pareto front or with a decrease in entropy generation tending toward the endoreversible limit. Moreover, it was shown that the total entropy generation can define a time scale for both the operation cycle time and the relaxation characteristic time.
Collapse
|
9
|
Gonzalez-Ayala J, Medina A, Roco JMM, Calvo Hernández A. Thermodynamic optimization subsumed in stability phenomena. Sci Rep 2020; 10:14305. [PMID: 32868825 PMCID: PMC7459129 DOI: 10.1038/s41598-020-71130-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/04/2020] [Indexed: 11/09/2022] Open
Abstract
In the present paper the possibility of an energetic self-optimization as a consequence of thermodynamic stability is addressed. This feature is analyzed in a low dissipation refrigerator working in an optimized trade-off regime (the so-called Omega function). The relaxation after a perturbation around the stable point indicates that stability is linked to trajectories in which the thermodynamic performance is improved. Furthermore, a limited control over the system is analyzed through consecutive external random perturbations. The statistics over many cycles corroborates the preference for a better thermodynamic performance. Endoreversible and irreversible behaviors play a relevant role in the relaxation trajectories (as well as in the statistical performance of many cycles experiencing random perturbations). A multi-objective optimization reveals that the well-known endoreversible limit works as an attractor of the system evolution coinciding with the Pareto front, which represents the best energetic compromise among efficiency, entropy generation, cooling power, input power and the Omega function. Meanwhile, near the stable state, performance and stability are dominated by an irreversible behavior.
Collapse
Affiliation(s)
- J Gonzalez-Ayala
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008, Salamanca, Spain.
| | - A Medina
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008, Salamanca, Spain
- Departamento de Física Aplicada, Facultad de Ciencias, 37008, Salamanca, Spain
| | - J M M Roco
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008, Salamanca, Spain
- Departamento de Física Aplicada, Facultad de Ciencias, 37008, Salamanca, Spain
| | - A Calvo Hernández
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008, Salamanca, Spain
- Departamento de Física Aplicada, Facultad de Ciencias, 37008, Salamanca, Spain
| |
Collapse
|
10
|
Zhang Y, Huang Y. Applicability of the low-dissipation model: Carnot-like heat engines under Newton's law of cooling. Phys Rev E 2020; 102:012151. [PMID: 32794970 DOI: 10.1103/physreve.102.012151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/10/2020] [Indexed: 11/07/2022]
Abstract
We investigate the validity of using the low-dissipation model (LD model) to describe the maximum power regime of the endoreversible model under Newton's law of cooling. We find it valid only when the temperature difference of heat reservoirs (T_{h}-T_{c}, T_{h}>T_{c}) is small. Thus the efficiency at maximum power derived from the LD model is valid to the first order of Carnot efficiency when describing endoreversible heat engines. We conclude that the LD model produces the Curzon-Ahlborn efficiency (η_{CA}=1-sqrt[T_{h}/T_{c}]) in the maximum power regime with no dependence on dissipation ratios.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Environmental Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuewu Huang
- College of Environmental Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| |
Collapse
|
11
|
Gonzalez-Ayala J, Guo J, Medina A, Roco JMM, Calvo Hernández A. Optimization induced by stability and the role of limited control near a steady state. Phys Rev E 2019; 100:062128. [PMID: 31962470 DOI: 10.1103/physreve.100.062128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 06/10/2023]
Abstract
A relationship between stability and self-optimization is found for weakly dissipative heat devices. The effect of limited control on operation variables around an steady state is such that, after instabilities, the paths toward relaxation are given by trajectories stemming from restitution forces which improve the system thermodynamic performance (power output, efficiency, and entropy generation). Statistics over random trajectories for many cycles shows this behavior as well. Two types of dynamics are analyzed, one where an stability basin appears and another one where the system is globally stable. Under both dynamics there is an induced trend in the control variables space due to stability. In the energetic space this behavior translates into a preference for better thermodynamic states, and thus stability could favor self-optimization under limited control. This is analyzed from the multiobjective optimization perspective. As a result, the statistical behavior of the system is strongly influenced by the Pareto front (the set of points with the best compromise between several objective functions) and the stability basin. Additionally, endoreversible and irreversible behaviors appear as very relevant limits: The first one is an upper bound in energetic performance, connected with the Pareto front, and the second one represents an attractor for the stochastic trajectories.
Collapse
Affiliation(s)
- J Gonzalez-Ayala
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - J Guo
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - A Medina
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - J M M Roco
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - A Calvo Hernández
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
12
|
Liu Q, He J, Ma Y, Wang J. Finite-power performance of quantum heat engines in linear response. Phys Rev E 2019; 100:012105. [PMID: 31499858 DOI: 10.1103/physreve.100.012105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Indexed: 11/07/2022]
Abstract
We investigate the finite-power performance of quantum heat engines working in the linear response regime where the temperature gradient is small. The engine cycles with working substances of ideal harmonic systems consist of two heat transfer and two adiabatic processes, such as the Carnot cycle, Otto cycle, and Brayton cycle. By analyzing the optimal protocol under maximum power we derive the explicitly analytic expression for the irreversible entropy production, which becomes the low dissipation form in the long duration limit. Assuming the engine to be endoreversible, we derive the universal expression for the efficiency at maximum power, which agrees well with that obtained from the phenomenological heat transfer laws holding in the classical thermodynamics. Through appropriate identification of the thermodynamic fluxes and forces that a linear relation connects, we find that the quantum engines under consideration are tightly coupled, and the universality of efficiency at maximum power is confirmed at the linear order in the temperature gradient.
Collapse
Affiliation(s)
- Qin Liu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China.,State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|