1
|
Koyama S, Oyama N, Mizuno H, Ikeda A. Enhanced collective vibrations in granular materials. SOFT MATTER 2025. [PMID: 40265522 DOI: 10.1039/d5sm00141b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Granular materials are defined as collections of macroscopic dissipative particles. Although these systems are ubiquitous in our lives, the nature and the causes of their non-trivial collective dynamics still remain elusive and have attracted significant interest in non-equilibrium physics. Here, we focus on the vibrational dynamics of granular materials. While the vibrational dynamics of random packings have been examined concerning the jamming transition, previous research has overlooked the role of contact dissipations. We conducted numerical and analytical investigations into the vibrational dynamics of random packings influenced by the normal dissipative force, which is the simplest model for contact dissipations. Our findings reveal that the kinetic energy per mode diverges in the low-frequency range, following the scaling law with the frequency ωl, indicating that low-frequency modes experience strong excitation and that the equipartition of energy is violated. Additionally, the spatial structure factor of the velocity field displays the scaling law Sv(q) ∝ q-2 with the wavenumber q, which signifies that the velocity field has an infinitely long range. We demonstrate that these phenomena arise from the effects of weaker damping on softer modes, where the particle displacements parallel to the contacts are minimal in the low-frequency modes, rendering normal dissipation ineffective at damping these modes.
Collapse
Affiliation(s)
- Shihori Koyama
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Norihiro Oyama
- Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan.
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Saitoh K, Tighe BP. Jamming transition and normal modes of polydispersed soft particle packing. SOFT MATTER 2025; 21:1263-1268. [PMID: 39790006 DOI: 10.1039/d4sm01305k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The jamming transition of soft particles characterized by narrow size distributions has been well studied by physicists. However, polydispersed systems are more relevant to engineering, and the influence of polydispersity on jamming phenomena is still unexplored. Here, we numerically investigate jamming transitions of polydispersed soft particles in two dimensions. We find that polydispersity strongly influences contact forces, local coordination, and the jamming transition density. In contrast, the critical scaling of pressure and elastic moduli is not affected by the particle size distribution. Consistent with this observation, we find that the vibrational density of states is also insensitive to the polydispersity. Our results suggest that, regardless of particle size distributions, both mechanical and vibrational properties of soft particle packings near jamming are governed by the distance to jamming.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
3
|
Yoshida M, Mizuno H, Ikeda A. Structural fluctuations in active glasses. SOFT MATTER 2024; 20:7678-7691. [PMID: 39291805 DOI: 10.1039/d4sm00821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The glassy dynamics of dense active matter have recently become a topic of interest due to their importance in biological processes such as wound healing and tissue development. However, while the liquid-state properties of dense active matter have been studied in relation to the glass transition of active matter, the solid-state properties of active glasses have yet to be understood. In this work, we study the structural fluctuations in the active glasses composed of self-propelled particles. We develop a formalism to describe the solid-state properties of active glasses in the harmonic approximation limit and use it to analyze the displacement fields in the active glasses. Our findings reveal that the dynamics of high-frequency normal modes become quasi-static with respect to the active forces, and consequently, excitations of these modes are significantly suppressed. This leads to a violation of the equipartition law, suppression of particle displacements, and the apparent collective motion of active glasses. Overall, our results provide a fundamental understanding of the solid-state properties of active glasses.
Collapse
Affiliation(s)
- Masaki Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Grießer J, Pastewka L. Vibrational lifetimes and viscoelastic properties of ultrastable glasses. Phys Rev E 2024; 110:025001. [PMID: 39294947 DOI: 10.1103/physreve.110.025001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/02/2024] [Indexed: 09/21/2024]
Abstract
Amorphous solids are viscoelastic. They dissipate energy when deformed at finite rate and finite temperature. We here use analytic theory and molecular simulations to demonstrate that linear viscoelastic dissipation can be directly related to the static and dynamic properties of the fundamental vibrational excitations of an amorphous system. We study ultrastable glasses that do not age, i.e., that remain in stable minima of the potential energy surface at finite temperature. Our simulations show four types of vibrational modes, which differ in spatial localization, similarity to plane waves and vibrational lifetimes. At frequencies below the Boson peak, the viscoelastic response can be split into contributions from plane-wave and quasilocalized modes. We derive a parameter-free expression for the viscoelastic storage and loss moduli for both of these modes. Our results show that the dynamics of microscopic dissipation, in particular the lifetimes of the modes, determine the viscoelastic response only at high frequency. Quasilocalized modes dominate the linear viscoelastic response at intermediate frequencies below the Boson peak.
Collapse
|
5
|
Schirmacher W, Paoluzzi M, Mocanu FC, Khomenko D, Szamel G, Zamponi F, Ruocco G. The nature of non-phononic excitations in disordered systems. Nat Commun 2024; 15:3107. [PMID: 38600083 PMCID: PMC11258284 DOI: 10.1038/s41467-024-46981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
The frequency scaling exponent of low-frequency excitations in microscopically small glasses, which do not allow for the existence of waves (phonons), has been in the focus of the recent literature. The density of states g(ω) of these modes obeys an ωs scaling, where the exponent s, ranging between 2 and 5, depends on the quenching protocol. The orgin of these findings remains controversal. Here we show, using heterogeneous-elasticity theory, that in a marginally-stable glass sample g(ω) follows a Debye-like scaling (s = 2), and the associated excitations (type-I) are of random-matrix type. Further, using a generalisation of the theory, we demonstrate that in more stable samples, other, (type-II) excitations prevail, which are non-irrotational oscillations, associated with local frozen-in stresses. The corresponding frequency scaling exponent s is governed by the statistics of small values of the stresses and, therefore, depends on the details of the interaction potential.
Collapse
Affiliation(s)
- Walter Schirmacher
- Institut für Physik, Staudinger Weg 7, Universität Mainz, D-55099, Mainz, Germany.
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 291 Viale Regina Elena, I-00161, Roma, Italy.
| | - Matteo Paoluzzi
- Istituto per le Applicazioni del Calcolo del Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131, Napoli, NA, Italy
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Carrer de Martí i Franquès 1, 08028, Barcelona, Spain
- Dipartimento di Fisica, Universita' di Roma "La Sapienza", P'le Aldo Moro 5, I-00185, Roma, Italy
| | - Felix Cosmin Mocanu
- Dept. of Materials, Univ. of Oxford, Parks Road, Oxford, OX13PH, UK
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Dmytro Khomenko
- Dipartimento di Fisica, Universita' di Roma "La Sapienza", P'le Aldo Moro 5, I-00185, Roma, Italy
| | - Grzegorz Szamel
- Dept. of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Francesco Zamponi
- Dipartimento di Fisica, Universita' di Roma "La Sapienza", P'le Aldo Moro 5, I-00185, Roma, Italy
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Giancarlo Ruocco
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 291 Viale Regina Elena, I-00161, Roma, Italy.
- Dipartimento di Fisica, Universita' di Roma "La Sapienza", P'le Aldo Moro 5, I-00185, Roma, Italy.
| |
Collapse
|
6
|
Shimada M, Shiraishi K, Mizuno H, Ikeda A. Instantaneous normal modes of glass-forming liquids during the athermal relaxation process of the steepest descent algorithm. SOFT MATTER 2024; 20:1583-1602. [PMID: 38273794 DOI: 10.1039/d3sm01104f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Understanding glass formation by quenching remains a challenge in soft condensed matter physics. Recent numerical studies on steepest descent dynamics, which is one of the simplest models of quenching, revealed that quenched liquids undergo slow relaxation with a power law towards mechanical equilibrium and that the late stage of this process is governed by local rearrangements of particles. These advances motivate the detailed study of instantaneous normal modes during the relaxation process because the glassy dynamics is considered to be governed by stationary points of the potential energy landscape. Here, we performed a normal mode analysis of configurations during the steepest descent dynamics and found that the dynamics is driven by almost flat directions of the potential energy landscape at long times. These directions correspond to localized modes and we characterized them in terms of their statistics and structure using methods developed in the study of local minima of the potential energy landscape.
Collapse
Affiliation(s)
- Masanari Shimada
- Department of Physics, Toronto Metropolitan University, M5B 2K3, Toronto, Canada.
| | - Kumpei Shiraishi
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Gagnon YJ, Burton JC, Roth CB. Development of broad modulus profile upon polymer-polymer interface formation between immiscible glassy-rubbery domains. Proc Natl Acad Sci U S A 2024; 121:e2312533120. [PMID: 38147561 PMCID: PMC10769838 DOI: 10.1073/pnas.2312533120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 12/28/2023] Open
Abstract
Interfaces of glassy materials such as thin films, blends, and composites create strong unidirectional gradients to the local heterogeneous dynamics that can be used to elucidate the length scales and mechanisms associated with the dynamic heterogeneity of glasses. We focus on bilayer films of two different polymers with very different glass transition temperatures ([Formula: see text]) where previous work has demonstrated a long-range (∼200 nm) profile in local [Formula: see text] is established between immiscible glassy and rubbery polymer domains when the polymer-polymer interface is formed to equilibrium. Here, we demonstrate that an equally long-ranged gradient in local modulus [Formula: see text] is established when the polymer-polymer interface ([Formula: see text]5 nm) is formed between domains of glassy polystyrene (PS) and rubbery poly(butadiene) (PB), consistent with previous reports of a broad [Formula: see text] profile in this system. A continuum physics model for the shear wave propagation caused by a quartz crystal microbalance across a PB/PS bilayer film is used to measure the viscoelastic properties of the bilayer during the evolution of the PB/PS interface showing the development of a broad gradient in local modulus [Formula: see text] spanning [Formula: see text]180 nm between the glassy and rubbery domains of PS and PB. We suggest these broad profiles in [Formula: see text] and [Formula: see text] arise from a coupling of the spectrum of vibrational modes across the polymer-polymer interface as a result of acoustic impedance matching of sound waves with [Formula: see text] nm during interface broadening that can then trigger density fluctuations in the neighboring domain.
Collapse
Affiliation(s)
| | | | - Connie B. Roth
- Department of Physics, Emory University, Atlanta, GA30322
| |
Collapse
|
8
|
Baumgärtel P, Vogel F, Fuchs M. Properties of stable ensembles of Euclidean random matrices. Phys Rev E 2024; 109:014120. [PMID: 38366508 DOI: 10.1103/physreve.109.014120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 02/18/2024]
Abstract
We study the spectrum of a system of coupled disordered harmonic oscillators in the thermodynamic limit. This Euclidean random matrix ensemble has been suggested as a model for the low temperature vibrational properties of glass. Exact numerical diagonalization is performed in three and two spatial dimensions, which is accompanied by a detailed finite size analysis. It reveals a low-frequency regime of sound waves that are damped by Rayleigh scattering. At large frequencies localized modes exist. In between, the central peak in the vibrational density of states is well described by Wigner's semicircle law for not too large disorder, as is expected for simple random matrix systems. We compare our results with predictions from two recent self-consistent field theories.
Collapse
Affiliation(s)
| | - Florian Vogel
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
9
|
Oyama N, Mizuno H, Ikeda A. Shear-induced criticality in glasses shares qualitative similarities with the Gardner phase. SOFT MATTER 2023; 19:6074-6087. [PMID: 37491980 DOI: 10.1039/d3sm00512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Although glass phases are ubiquitously found in various soft matter systems, we are still far from a complete understanding of them. The concept of marginal stability predicted by infinite-dimensional mean-field theories is drawing attention as a candidate for a universal and distinguishing unique feature of glasses. While among theoretical predictions, the non-Debye scaling has indeed been observed universally over various classes of glasses, the Gardner phase is found only in a limited portion of them. In this work, we numerically demonstrate that plastic events observed in two-dimensional Lennard-Jones glasses under quasistatic shear exhibit statistical properties that are qualitatively consistent with the picture of an infinitely hierarchical energy landscape associated with the Gardner phase.
Collapse
Affiliation(s)
- Norihiro Oyama
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
- Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
10
|
Shiraishi K, Mizuno H, Ikeda A. Johari-Goldstein β relaxation in glassy dynamics originates from two-scale energy landscape. Proc Natl Acad Sci U S A 2023; 120:e2215153120. [PMID: 36989301 PMCID: PMC10083593 DOI: 10.1073/pnas.2215153120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/17/2023] [Indexed: 03/30/2023] Open
Abstract
Supercooled liquids undergo complicated structural relaxation processes, which have been a long-standing problem in both experimental and theoretical aspects of condensed matter physics. In particular, past experiments widely observed for many types of molecular liquids that relaxation dynamics separated into two distinct processes at low temperatures. One of the possible interpretations is that this separation originates from the two-scale hierarchical topography of the potential energy landscape; however, it has never been verified. Molecular dynamics simulations are a promising approach to tackle this issue, but we must overcome laborious difficulties. First, we must handle a model of molecular liquids that is computationally demanding compared to simple spherical models, which have been intensively studied but show only a slower process: α relaxation. Second, we must reach a sufficiently low-temperature regime where the two processes become well-separated. Here, we handle an asymmetric dimer system that exhibits a faster process: Johari-Goldstein β relaxation. Then, we employ the parallel tempering method to access the low-temperature regime. These laborious efforts enable us to investigate the potential energy landscape in detail and unveil the first direct evidence of the topographic hierarchy that induces the β relaxation. We also successfully characterize the microscopic motions of particles during each relaxation process. Finally, we study the correlation between low-frequency modes and two relaxation processes. Our results establish a fundamental and comprehensive understanding of experimentally observed relaxation dynamics in supercooled liquids.
Collapse
Affiliation(s)
- Kumpei Shiraishi
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo153-8902, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo153-8902, Japan
| |
Collapse
|
11
|
Shiba H, Hanai M, Suzumura T, Shimokawabe T. BOTAN: BOnd TArgeting Network for prediction of slow glassy dynamics by machine learning relative motion. J Chem Phys 2023; 158:084503. [PMID: 36859106 DOI: 10.1063/5.0129791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Recent developments in machine learning have enabled accurate predictions of the dynamics of slow structural relaxation in glass-forming systems. However, existing machine learning models for these tasks are mostly designed such that they learn a single dynamic quantity and relate it to the structural features of glassy liquids. In this study, we propose a graph neural network model, "BOnd TArgeting Network," that learns relative motion between neighboring pairs of particles, in addition to the self-motion of particles. By relating the structural features to these two different dynamical variables, the model autonomously acquires the ability to discern how the self motion of particles undergoing slow relaxation is affected by different dynamical processes, strain fluctuations and particle rearrangements, and thus can predict with high precision how slow structural relaxation develops in space and time.
Collapse
Affiliation(s)
- Hayato Shiba
- Information Technology Center, University of Tokyo, Chiba 277-0882, Japan
| | - Masatoshi Hanai
- Information Technology Center, University of Tokyo, Chiba 277-0882, Japan
| | - Toyotaro Suzumura
- Information Technology Center, University of Tokyo, Chiba 277-0882, Japan
| | | |
Collapse
|
12
|
Shimada M, Oyama N. Gas-liquid phase separation at zero temperature: mechanical interpretation and implications for gelation. SOFT MATTER 2022; 18:8406-8417. [PMID: 36285640 DOI: 10.1039/d2sm00628f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The relationship between glasses and gels has been intensely debated for decades; however, the transition between these two phases remains elusive. To investigate a gel formation process in the zero-temperature limit and its relation to the glass phase, we conducted numerical experiments on athermal quasistatic decompression. During decompression, the system experiences a cavitation event similar to phase separation and this is a gelation process at zero temperature. A normal mode analysis revealed that the phase separation is signaled by the vanishing of the lowest eigenenergy, similar to plastic events of glasses under shear. One primary difference from the shear-induced plasticity is that the vanishing mode experiences a qualitative change in its spatial energy distribution at the phase separation point. These findings enable us to define the glass-gel phase boundary based on mechanics.
Collapse
Affiliation(s)
- Masanari Shimada
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Department of Physics, Toronto Metropolitan University, M5B 2K3, Toronto, Canada.
| | - Norihiro Oyama
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
| |
Collapse
|
13
|
Shiraishi K, Hara Y, Mizuno H. Low-frequency vibrational states in ideal glasses with random pinning. Phys Rev E 2022; 106:054611. [PMID: 36559418 DOI: 10.1103/physreve.106.054611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Glasses exhibit spatially localized vibrations in the low-frequency regime. These localized modes emerge below the boson peak frequency ω_{BP}, and their vibrational densities of state follow g(ω)∝ω^{4} (ω is frequency). Here, we attempt to address how the localized vibrations behave through the ideal glass transition. To do this, we employ a random pinning method, which enables us to study the thermodynamic glass transition. We find that the localized vibrations survive even in equilibrium glass states. Remarkably, the localized vibrations still maintain the properties of appearance below ω_{BP} and g(ω)∝ω^{4}. Our results provide important insight into the material properties of ideal glasses.
Collapse
Affiliation(s)
- Kumpei Shiraishi
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Yusuke Hara
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
14
|
Wang L, Fu L, Nie Y. Density of states below the first sound mode in 3D glasses. J Chem Phys 2022; 157:074502. [DOI: 10.1063/5.0102081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glasses feature universally low-frequency excess vibrational modes beyond Debye prediction, which could help rationalize, e.g., the glasses’ unusual temperature dependence of thermal properties compared to crystalline solids. The way the density of states of these low-frequency excess modes D( ω) depends on the frequency ω has been debated for decades. Recent simulation studies of 3D glasses suggest that D( ω) scales universally with ω4 in a low-frequency regime below the first sound mode. However, no simulation study has ever probed as low frequencies as possible to test directly whether this quartic law could work all the way to extremely low frequencies. Here, we calculated D( ω) below the first sound mode in 3D glasses over a wide range of frequencies. We find D( ω) scales with ω β with β < 4 at very low frequencies examined, while the ω4 law works only in a limited intermediate-frequency regime in some glasses. Moreover, our further analysis suggests our observation does not depend on glass models or glass stabilities examined. The ω4 law of D( ω) below the first sound mode is dominant in current simulation studies of 3D glasses, and our direct observation of the breakdown of the quartic law at very low frequencies thus leaves an open but important question that may attract more future numerical and theoretical studies.
Collapse
Affiliation(s)
- Lijin Wang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Licun Fu
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Yunhuan Nie
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
15
|
Mizuno H, Hachiya M, Ikeda A. Phonon transport properties of particulate physical gels. J Chem Phys 2022; 156:204505. [DOI: 10.1063/5.0090233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Particulate physical gels are sparse, low-density amorphous materials in which clusters of glasses are connected to form a heterogeneous network structure. This structure is characterized by two length scales, ξ s and ξ G: ξ s measures the length of heterogeneities in the network structure and ξ G is the size of glassy clusters. Accordingly, the vibrational states (eigenmodes) of such a material also exhibit a multiscale nature with two characteristic frequencies, [Formula: see text] and ω G, which are associated with ξ s and ξ G, respectively: (i) phonon-like vibrations in the homogeneous medium at [Formula: see text], (ii) phonon-like vibrations in the heterogeneous medium at [Formula: see text], and (iii) disordered vibrations in the glassy clusters at ω > ω G. Here, we demonstrate that the multiscale characteristics seen in the static structures and vibrational states also extend to the phonon transport properties. Phonon transport exhibits two distinct crossovers at frequencies ω* and ω G (or at wavenumbers of [Formula: see text] and [Formula: see text]). In particular, both transverse and longitudinal phonons cross over between Rayleigh scattering at [Formula: see text] and diffusive damping at [Formula: see text]. Remarkably, the Ioffe–Regel limit is located at the very low frequency of ω*. Thus, phonon transport is localized above ω*, even where phonon-like vibrational states persist. This markedly strong scattering behavior is caused by the sparse, porous structure of the gel.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Makoto Hachiya
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
16
|
Mizuno H, Hachiya M, Ikeda A. Structural, mechanical, and vibrational properties of particulate physical gels. J Chem Phys 2021; 155:234502. [PMID: 34937359 DOI: 10.1063/5.0072863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Our lives are surrounded by a rich assortment of disordered materials. In particular, glasses are well known as dense, amorphous materials, whereas gels exist in low-density, disordered states. Recent progress has provided a significant step forward in understanding the material properties of glasses, such as mechanical, vibrational, and transport properties. In contrast, our understanding of particulate physical gels is still highly limited. Here, using molecular dynamics simulations, we study a simple model of particulate physical gels, the Lennard-Jones (LJ) gels, and provide a comprehensive understanding of their structural, mechanical, and vibrational properties, all of which are markedly different from those of LJ glasses. First, the LJ gels show sparse, heterogeneous structures, and the length scale ξs of the structures grows as the density is lowered. Second, the LJ gels are extremely soft, with both shear G and bulk K moduli being orders of magnitude smaller than those of LJ glasses. Third, many low-frequency vibrational modes are excited, which form a characteristic plateau with the onset frequency ω* in the vibrational density of states. Structural, mechanical, and vibrational properties, characterized by ξs, G, K, and ω*, respectively, show power-law scaling behaviors with the density, which establishes a close relationship between them. Throughout this work, we also reveal that LJ gels are multiscale, solid-state materials: (i) homogeneous elastic bodies at long lengths, (ii) heterogeneous elastic bodies with fractal structures at intermediate lengths, and (iii) amorphous structural bodies at short lengths.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Makoto Hachiya
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
17
|
Wang L, Szamel G, Flenner E. Low-Frequency Excess Vibrational Modes in Two-Dimensional Glasses. PHYSICAL REVIEW LETTERS 2021; 127:248001. [PMID: 34951818 DOI: 10.1103/physrevlett.127.248001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Glasses possess more low-frequency vibrational modes than predicted by Debye theory. These excess modes are crucial for the understanding of the low temperature thermal and mechanical properties of glasses, which differ from those of crystalline solids. Recent simulational studies suggest that the density of the excess modes scales with their frequency ω as ω^{4} in two and higher dimensions. Here, we present extensive numerical studies of two-dimensional model glass formers over a large range of glass stabilities. We find that the density of the excess modes follows D_{exc}(ω)∼ω^{2} up to around the boson peak, regardless of the glass stability. The stability dependence of the overall scale of D_{exc}(ω) correlates with the stability dependence of low-frequency sound attenuation. However, we also find that, in small systems, where the first sound mode is pushed to higher frequencies, at frequencies below the first sound mode, there are excess modes with a system size independent density of states that scales as ω^{3}.
Collapse
Affiliation(s)
- Lijin Wang
- School of Physics and Optoelectronics Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
18
|
Tomoshige N, Goto S, Mizuno H, Mori T, Kim K, Matubayasi N. Understanding the scaling of boson peak through insensitivity of elastic heterogeneity to bending rigidity in polymer glasses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:274002. [PMID: 33930889 DOI: 10.1088/1361-648x/abfd51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Amorphous materials exhibit peculiar mechanical and vibrational properties, including non-affine elastic responses and excess vibrational states, i.e., the so-called boson peak (BP). For polymer glasses, these properties are considered to be affected by the bending rigidity of the constituent polymer chains. In our recent work [Tomoshige,et al2019,Sci. Rep.919514], we have revealed simple relationships between the variations of vibrational properties and the global elastic properties: the response of the BP scales only with that of the global shear modulus. This observation suggests that the spatial heterogeneity of the local shear modulus distribution is insensitive to changes in the bending rigidity. Here, we demonstrate the insensitivity of elastic heterogeneity by directly measuring the local shear modulus distribution. We also study transverse sound wave propagation, which is also shown to scale only with the global shear modulus. Through these analyses, we conclude that the bending rigidity does not alter the spatial heterogeneity of the local shear modulus distribution, which yields vibrational and acoustic properties that are controlled solely by the global shear modulus of a polymer glass.
Collapse
Affiliation(s)
- Naoya Tomoshige
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shota Goto
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Tatsuya Mori
- Department of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kang Kim
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
19
|
Massa CA, Puosi F, Tripodo A, Leporini D. Open and Anisotropic Soft Regions in a Model Polymer Glass. Polymers (Basel) 2021; 13:polym13081336. [PMID: 33921750 PMCID: PMC8072583 DOI: 10.3390/polym13081336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022] Open
Abstract
The vibrational dynamics of a model polymer glass is studied by Molecular Dynamics simulations. The focus is on the “soft” monomers with high participation to the lower-frequency vibrational modes contributing to the thermodynamic anomalies of glasses. To better evidence their role, the threshold to qualify monomers as soft is made severe, allowing for the use of systems with limited size. A marked tendency of soft monomers to form quasi-local clusters involving up to 15 monomers is evidenced. Each chain contributes to a cluster up to about three monomers and a single cluster involves a monomer belonging to about 2–3 chains. Clusters with monomers belonging to a single chain are rare. The open and tenuous character of the clusters is revealed by their fractal dimension df<2. The inertia tensor of the soft clusters evidences their strong anisotropy in shape and remarkable linear correlation of the two largest eigenvalues. Owing to the limited size of the system, finite-size effects, as well as dependence of the results on the adopted polymer length, cannot be ruled out.
Collapse
Affiliation(s)
- Carlo Andrea Massa
- Istituto per i Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche (IPCF-CNR), Via G Moruzzi 1, 56124 Pisa, Italy;
| | - Francesco Puosi
- Istituto Nazionale di Fisica Nucleare, Largo B. Pontecorvo 3, 56127 Pisa, Italy;
- Dipartimento di Fisica ‘Enrico Fermi’, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy;
| | - Antonio Tripodo
- Dipartimento di Fisica ‘Enrico Fermi’, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy;
| | - Dino Leporini
- Istituto per i Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche (IPCF-CNR), Via G Moruzzi 1, 56124 Pisa, Italy;
- Dipartimento di Fisica ‘Enrico Fermi’, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-2214937
| |
Collapse
|
20
|
Shimada M, Mizuno H, Ikeda A. Novel elastic instability of amorphous solids in finite spatial dimensions. SOFT MATTER 2021; 17:346-364. [PMID: 33164008 DOI: 10.1039/d0sm01583k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, progress has been made in the understanding of anomalous vibrational excitations in amorphous solids. In the lowest-frequency region, the vibrational spectrum follows a non-Debye quartic law, which persists up to zero frequency without any frequency gap. This gapless vibrational density of states (vDOS) suggests that glasses are on the verge of instability. This feature of marginal stability is now highlighted as a key concept in the theories of glasses. In particular, the elasticity theory based on marginal stability predicts the gapless vDOS. However, this theory yields a quadratic law and not the quartic law. To address this inconsistency, we presented a new type of instability, which is different from the conventional one, and proposed that amorphous solids are marginally stable considering the new instability in the preceding study [M. Shimada, H. Mizuno and A. Ikeda, Soft Matter, 2020, 16, 7279]. In this study, we further extend and detail the results for these instabilities. By analyzing various examples of disorder, we demonstrate that real glasses in finite spatial dimensions can be marginally stable by the proposed novel instability.
Collapse
Affiliation(s)
- Masanari Shimada
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan. and Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
21
|
Mizuno H, Tong H, Ikeda A, Mossa S. Intermittent rearrangements accompanying thermal fluctuations distinguish glasses from crystals. J Chem Phys 2020; 153:154501. [PMID: 33092390 DOI: 10.1063/5.0021228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Glasses exhibit vibrational and thermal properties that are markedly different from those of crystals. While recent works have advanced our understanding of vibrational excitations in glasses in the harmonic approximation limit, efforts in understanding finite-temperature anharmonic processes have been limited. In crystals, phonon-phonon coupling provides an extremely efficient mechanism for anharmonic decay that is also important in glasses. By using extensive molecular dynamics simulation of model atomic systems, here we first describe, both numerically and analytically, the anharmonic couplings in the crystal and the glass by focusing on the temperature dependence of the associated decay rates. Next, we show that an additional anharmonic channel of different origin emerges in the amorphous case, which induces unconventional intermittent rearrangements of particles. We have found that thermal vibrations in glasses trigger transitions among numerous different local minima of the energy landscape, which, however, are located within the same wide (meta)basin. These processes generate motions that are different from both diffusive and out-of-equilibrium aging dynamics. We suggest that (i) the observed intermittent rearrangements accompanying thermal fluctuations are crucial features distinguishing glasses from crystals and (ii) they can be considered as relics of the liquid state that survive the complete dynamic arrest taking place at the glass transition temperature.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hua Tong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Stefano Mossa
- Univ. Grenoble Alpes, CEA, IRIG-MEM, 38000 Grenoble, France
| |
Collapse
|
22
|
Caroli C, Lemaître A. Key role of retardation and non-locality in sound propagation in amorphous solids as evidenced by a projection formalism. J Chem Phys 2020; 153:144502. [PMID: 33086830 DOI: 10.1063/5.0019964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We investigate acoustic propagation in amorphous solids by constructing a projection formalism based on separating atomic vibrations into two, "phonon" (P) and "non-phonon" (NP), subspaces corresponding to large and small wavelengths. For a pairwise interaction model, we show the existence of a "natural" separation lengthscale, determined by structural disorder, for which the isolated P subspace presents the acoustic properties of a nearly homogenous (Debye-like) elastic continuum, while the NP one encapsulates all small scale non-affinity effects. The NP eigenstates then play the role of dynamical scatterers for the phonons. However, at variance with a conjecture of defect theories, their spectra present a finite low frequency gap, which turns out to lie around the Boson peak frequency, and only a small fraction of them are highly localized. We then show that small scale disorder effects can be rigorously reduced to the existence, in the Navier-like wave equation of the continuum, of a generalized elasticity tensor, which is not only retarded, since scatterers are dynamical, but also non-local. The full neglect of both retardation and non-locality suffices to account for most of the corrections to Born macroscopic moduli. However, these two features are responsible for sound speed dispersion and have quite a significant effect on the magnitude of sound attenuation. Although it remains open how they impact the asymptotic, large wavelength scaling of sound damping, our findings rule out the possibility of representing an amorphous solid by an inhomogeneous elastic continuum with the standard (i.e., local and static) elastic moduli.
Collapse
Affiliation(s)
- Christiane Caroli
- Sorbonne Universités, UPMC Université Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 Place Jussieu, 75005 Paris, France
| | - Anaël Lemaître
- NAVIER, UMR 8205, École des Ponts ParisTech, IFSTTAR, CNRS, UPE, Champs-sur-Marne, France
| |
Collapse
|
23
|
Shimada M, Mizuno H, Ikeda A. Vibrational spectrum derived from local mechanical response in disordered solids. SOFT MATTER 2020; 16:7279-7288. [PMID: 32696792 DOI: 10.1039/d0sm00376j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The low-frequency vibrations of glasses are markedly different from those of crystals. These vibrations have recently been categorized into two types: spatially extended vibrations, whose vibrational density of states (vDOS) follows a non-Debye quadratic law, and quasilocalized vibrations (QLVs), whose vDOS follows a quartic law. The former are explained by elasticity theory with quenched disorder and microscopic replica theory as being a consequence of elastic instability, but the origin of the latter is still debated. Here, we show that the latter can also be directly derived from elasticity theory with quenched disorder. We find another elastic instability that the theory encompasses but that has been overlooked so far, namely, the instability of the system against a local dipolar force. This instability gives rise to an additional contribution to the vDOS, and the spatial structure and energetics of the mode originating from this instability are consistent with those of the QLVs. Finally, we construct a model in which the additional contribution to the vDOS follows a quartic law.
Collapse
Affiliation(s)
- Masanari Shimada
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | | | | |
Collapse
|
24
|
Rainone C, Bouchbinder E, Lerner E. Statistical mechanics of local force dipole responses in computer glasses. J Chem Phys 2020; 152:194503. [PMID: 33687248 DOI: 10.1063/5.0005655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Soft quasilocalized modes (QLMs) are universally featured by structural glasses quenched from a melt, and are involved in several glassy anomalies such as the low-temperature scaling of their thermal conductivity and specific heat, and sound attenuation at intermediate frequencies. In computer glasses, QLMs may assume the form of harmonic vibrational modes under a narrow set of circumstances; however, direct access to their full distribution over frequency is hindered by hybridizations of QLMs with other low-frequency modes (e.g., phonons). Previous studies to overcome this issue have demonstrated that the response of a glass to local force dipoles serves as a good proxy for its QLMs; we, therefore, study here the statistical-mechanical properties of these responses in computer glasses, over a large range of glass stabilities and in various spatial dimensions, with the goal of revealing properties of the yet-inaccessible full distribution of QLMs' frequencies. We find that as opposed to the spatial-dimension-independent universal distribution of QLMs' frequencies ω (and, consequently, also of their stiffness κ = ω2), the distribution of stiffnesses associated with responses to local force dipoles features a (weak) dependence on spatial dimension. We rationalize this dependence by introducing a lattice model that incorporates both the real-space profiles of QLMs-associated with dimension-dependent long-range elastic fields-and the universal statistical properties of their frequencies. Based on our findings, we propose a conjecture about the form of the full distribution of QLMs' frequencies and its protocol-dependence. Finally, we discuss possible connections of our findings to basic aspects of glass formation and deformation.
Collapse
Affiliation(s)
- Corrado Rainone
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
25
|
Shimada M, Mizuno H, Berthier L, Ikeda A. Low-frequency vibrations of jammed packings in large spatial dimensions. Phys Rev E 2020; 101:052906. [PMID: 32575185 DOI: 10.1103/physreve.101.052906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Amorphous packings prepared in the vicinity of the jamming transition play a central role in theoretical studies of the vibrational spectrum of glasses. Two mean-field theories predict that the vibrational density of states g(ω) obeys a characteristic power law, g(ω)∼ω^{2}, called the non-Debye scaling in the low-frequency region. Numerical studies have, however, reported that this scaling breaks down at low frequencies, due to finite-dimensional effects. In this study, we prepare amorphous packings of up to 128000 particles in spatial dimensions from d=3 to d=9 to characterize the range of validity of the non-Debye scaling. Our numerical results suggest that the non-Debye scaling is obeyed down to a frequency that gradually decreases as d increases, and possibly vanishes for large d, in agreement with mean-field predictions. We also show that the prestress is an efficient control parameter to quantitatively compare packings across different spatial dimensions.
Collapse
Affiliation(s)
- Masanari Shimada
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
26
|
Boson peak, elasticity, and glass transition temperature in polymer glasses: Effects of the rigidity of chain bending. Sci Rep 2019; 9:19514. [PMID: 31862997 PMCID: PMC6925306 DOI: 10.1038/s41598-019-55564-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/29/2019] [Indexed: 11/24/2022] Open
Abstract
The excess low-frequency vibrational spectrum, called boson peak, and non-affine elastic response are the most important particularities of glasses. Herein, the vibrational and mechanical properties of polymeric glasses are examined by using coarse-grained molecular dynamics simulations, with particular attention to the effects of the bending rigidity of the polymer chains. As the rigidity increases, the system undergoes a glass transition at a higher temperature (under a constant pressure), which decreases the density of the glass phase. The elastic moduli, which are controlled by the decrease of the density and the increase of the rigidity, show a non-monotonic dependence on the rigidity of the polymer chain that arises from the non-affine component. Moreover, a clear boson peak is observed in the vibrational density of states, which depends on the macroscopic shear modulus G. In particular, the boson peak frequency ωBP is proportional to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt{G}$$\end{document}G. These results provide a positive correlation between the boson peak, shear elasticity, and the glass transition temperature.
Collapse
|
27
|
Wang L, Ninarello A, Guan P, Berthier L, Szamel G, Flenner E. Low-frequency vibrational modes of stable glasses. Nat Commun 2019; 10:26. [PMID: 30604770 PMCID: PMC6318266 DOI: 10.1038/s41467-018-07978-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/04/2018] [Indexed: 11/08/2022] Open
Abstract
Unusual features of the vibrational density of states D(ω) of glasses allow one to rationalize their peculiar low-temperature properties. Simulational studies of D(ω) have been restricted to studying poorly annealed glasses that may not be relevant to experiments. Here we report on D(ω) of zero-temperature glasses with kinetic stabilities ranging from poorly annealed to ultrastable glasses. For all preparations, the low-frequency part of D(ω) splits between extended and quasi-localized modes. Extended modes exhibit a boson peak crossing over to Debye behavior (Dex(ω) ~ ω2) at low-frequency, with a strong correlation between the two regimes. Quasi-localized modes obey Dloc(ω) ~ ω4, irrespective of the stability. The prefactor of this quartic law decreases with increasing stability, and the corresponding modes become more localized and sparser. Our work is the first numerical observation of quasi-localized modes in a regime relevant to experiments, and it establishes a direct connection between glasses' stability and their soft vibrational modes.
Collapse
Affiliation(s)
- Lijin Wang
- Beijing Computational Science Research Center, 100193, Beijing, China
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Andrea Ninarello
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095, Montpellier, France
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185, Roma, Italy
| | - Pengfei Guan
- Beijing Computational Science Research Center, 100193, Beijing, China.
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095, Montpellier, France
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
28
|
Kapteijns G, Bouchbinder E, Lerner E. Universal Nonphononic Density of States in 2D, 3D, and 4D Glasses. PHYSICAL REVIEW LETTERS 2018; 121:055501. [PMID: 30118293 DOI: 10.1103/physrevlett.121.055501] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 06/08/2023]
Abstract
It is now well established that structural glasses possess disorder- and frustration-induced soft quasilocalized excitations, which play key roles in various glassy phenomena. Recent work has established that in model glass formers in three dimensions, these nonphononic soft excitations may assume the form of quasilocalized, harmonic vibrational modes whose frequency follows a universal density of states D(ω)∼ω^{4}, independently of microscopic details, and for a broad range of glass preparation protocols. Here, we further establish the universality of the nonphononic density of vibrational modes by direct measurements in model structural glasses in two dimensions and four dimensions. We also investigate their degree of localization, which is generally weaker in lower spatial dimensions, giving rise to a pronounced system-size dependence of the nonphononic density of states in two dimensions, but not in higher dimensions. Finally, we identify a fundamental glassy frequency scale ω_{c} above which the universal ω^{4} law breaks down.
Collapse
Affiliation(s)
- Geert Kapteijns
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|