Riascos AP, Sanders DP. Mean encounter times for multiple random walkers on networks.
Phys Rev E 2021;
103:042312. [PMID:
34005853 DOI:
10.1103/physreve.103.042312]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
Abstract
We introduce a general approach for the study of the collective dynamics of noninteracting random walkers on connected networks. We analyze the movement of R independent (Markovian) walkers, each defined by its own transition matrix. By using the eigenvalues and eigenvectors of the R independent transition matrices, we deduce analytical expressions for the collective stationary distribution and the average number of steps needed by the random walkers to start in a particular configuration and reach specific nodes the first time (mean first-passage times), as well as global times that characterize the global activity. We apply these results to the study of mean first-encounter times for local and nonlocal random walk strategies on different types of networks, with both synchronous and asynchronous motion.
Collapse