1
|
Krajňák V, Naik S, Wiggins S. Predicting trajectory behaviour via machine-learned invariant manifolds. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Nagahata Y, Hernandez R, Komatsuzaki T. Phase space geometry of isolated to condensed chemical reactions. J Chem Phys 2021; 155:210901. [PMID: 34879678 DOI: 10.1063/5.0059618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complexity of gas and condensed phase chemical reactions has generally been uncovered either approximately through transition state theories or exactly through (analytic or computational) integration of trajectories. These approaches can be improved by recognizing that the dynamics and associated geometric structures exist in phase space, ensuring that the propagator is symplectic as in velocity-Verlet integrators and by extending the space of dividing surfaces to optimize the rate variationally, respectively. The dividing surface can be analytically or variationally optimized in phase space, not just over configuration space, to obtain more accurate rates. Thus, a phase space perspective is of primary importance in creating a deeper understanding of the geometric structure of chemical reactions. A key contribution from dynamical systems theory is the generalization of the transition state (TS) in terms of the normally hyperbolic invariant manifold (NHIM) whose geometric phase-space structure persists under perturbation. The NHIM can be regarded as an anchor of a dividing surface in phase space and it gives rise to an exact non-recrossing TS theory rate in reactions that are dominated by a single bottleneck. Here, we review recent advances of phase space geometrical structures of particular relevance to chemical reactions in the condensed phase. We also provide conjectures on the promise of these techniques toward the design and control of chemical reactions.
Collapse
Affiliation(s)
- Yutaka Nagahata
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Tamiki Komatsuzaki
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0 020, Japan
| |
Collapse
|
3
|
Clark AE, Adams H, Hernandez R, Krylov AI, Niklasson AMN, Sarupria S, Wang Y, Wild SM, Yang Q. The Middle Science: Traversing Scale In Complex Many-Body Systems. ACS CENTRAL SCIENCE 2021; 7:1271-1287. [PMID: 34471670 PMCID: PMC8393217 DOI: 10.1021/acscentsci.1c00685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A roadmap is developed that integrates simulation methodology and data science methods to target new theories that traverse the multiple length- and time-scale features of many-body phenomena.
Collapse
Affiliation(s)
- Aurora E. Clark
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Henry Adams
- Department of Mathematics, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Rigoberto Hernandez
- Departments
of Chemistry, Chemical and Biomolecular Engineering, and Materials
Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anders M. N. Niklasson
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sapna Sarupria
- Department of Chemical and Biomolecular Engineering, Center for Optical
Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, South Carolina 29670, United States
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yusu Wang
- Halıcıŏglu Data Science Institute, University of California, San Diego, La Jolla, California 92093, United States
| | - Stefan M. Wild
- Mathematics
and Computer Science Division, Argonne National
Laboratory, Lemont, Illinois 60439, United
States
| | - Qian Yang
- Computer Science and Engineering Department, University of Connecticut, Storrs, Connecticut 06269-4155, United States
| |
Collapse
|
4
|
Affiliation(s)
- Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Departments of Chemical & Biomolecular Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Hernandez R. A Cuban Campesino in Chemistry's Academic Court. J Phys Chem B 2021; 125:8261-8267. [PMID: 34313115 DOI: 10.1021/acs.jpcb.1c06073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Departments of Chemical & Biomolecular Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Bardakcioglu R, Reiff J, Feldmaier M, Main J, Hernandez R. Thermal decay rates of an activated complex in a driven model chemical reaction. Phys Rev E 2020; 102:062204. [PMID: 33466091 DOI: 10.1103/physreve.102.062204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/15/2020] [Indexed: 11/07/2022]
Abstract
Recent work has shown that in a nonthermal, multidimensional system, the trajectories in the activated complex possess different instantaneous and time-averaged reactant decay rates. Under dissipative dynamics, it is known that these trajectories, which are bound on the normally hyperbolic invariant manifold (NHIM), converge to a single trajectory over time. By subjecting these dissipative systems to thermal noise, we find fluctuations in the saddle-bound trajectories and their instantaneous decay rates. Averaging over these instantaneous rates results in the decay rate of the activated complex in a thermal system. We find that the temperature dependence of the activated complex decay in a thermal system can be linked to the distribution of the phase space resolved decay rates on the NHIM in the nondissipative case. By adjusting the external driving of the reaction, we show that it is possible to influence how the decay rate of the activated complex changes with rising temperature.
Collapse
Affiliation(s)
- Robin Bardakcioglu
- Institut für Theoretische Physik I, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Johannes Reiff
- Institut für Theoretische Physik I, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Matthias Feldmaier
- Institut für Theoretische Physik I, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik I, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
7
|
Feldmaier M, Reiff J, Benito RM, Borondo F, Main J, Hernandez R. Influence of external driving on decays in the geometry of the LiCN isomerization. J Chem Phys 2020; 153:084115. [DOI: 10.1063/5.0015509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Johannes Reiff
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rosa M. Benito
- Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Florentino Borondo
- Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco, 28049 Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
8
|
Tschöpe M, Feldmaier M, Main J, Hernandez R. Neural network approach for the dynamics on the normally hyperbolic invariant manifold of periodically driven systems. Phys Rev E 2020; 101:022219. [PMID: 32168686 DOI: 10.1103/physreve.101.022219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 01/29/2020] [Indexed: 05/21/2023]
Abstract
Chemical reactions in multidimensional systems are often described by a rank-1 saddle, whose stable and unstable manifolds intersect in the normally hyperbolic invariant manifold (NHIM). Trajectories started on the NHIM in principle never leave this manifold when propagated forward or backward in time. However, the numerical investigation of the dynamics on the NHIM is difficult because of the instability of the motion. We apply a neural network to describe time-dependent NHIMs and use this network to stabilize the motion on the NHIM for a periodically driven model system with two degrees of freedom. The method allows us to analyze the dynamics on the NHIM via Poincaré surfaces of section (PSOS) and to determine the transition-state (TS) trajectory as a periodic orbit with the same periodicity as the driving saddle, viz. a fixed point of the PSOS surrounded by near-integrable tori. Based on transition state theory and a Floquet analysis of a periodic TS trajectory we compute the rate constant of the reaction with significantly reduced numerical effort compared to the propagation of a large trajectory ensemble.
Collapse
Affiliation(s)
- Martin Tschöpe
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
9
|
Feldmaier M, Bardakcioglu R, Reiff J, Main J, Hernandez R. Phase-space resolved rates in driven multidimensional chemical reactions. J Chem Phys 2019; 151:244108. [DOI: 10.1063/1.5127539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Robin Bardakcioglu
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Johannes Reiff
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
10
|
Feldmaier M, Schraft P, Bardakcioglu R, Reiff J, Lober M, Tschöpe M, Junginger A, Main J, Bartsch T, Hernandez R. Invariant Manifolds and Rate Constants in Driven Chemical Reactions. J Phys Chem B 2019; 123:2070-2086. [DOI: 10.1021/acs.jpcb.8b10541] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Philippe Schraft
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Robin Bardakcioglu
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Johannes Reiff
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Melissa Lober
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Martin Tschöpe
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Andrej Junginger
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Thomas Bartsch
- Centre for Nonlinear Mathematics and Applications, Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|