1
|
Vizsnyiczai G, Kubacková J, Iványi GT, Slabý C, Horváth D, Hovan A, Strejčková A, Tomori Z, Kelemen L, Bánó G. 3D-printed ultra-small Brownian viscometers. Sci Rep 2024; 14:13964. [PMID: 38886461 PMCID: PMC11183119 DOI: 10.1038/s41598-024-64792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Measuring viscosity in volumes smaller than a microliter is a challenging endeavor. A new type of microscopic viscometers is presented to assess the viscosity of Newtonian liquids. Micron-sized flexible polymer cantilevers are created by two-photon polymerization direct laser writing. Because of the low stiffness and high elasticity of the polymer material the microcantilevers exhibit pronounced Brownian motion when submerged in a liquid medium. By imaging the cantilever's spherically shaped end, these fluctuations can be tracked with high accuracy. The hydrodynamic resistance of the microviscometer is determined by fitting the power spectral density of the measured fluctuations with a theoretical frequency dependence. Validation measurements in water-glycerol mixtures with known viscosities reveal excellent linearity of the hydrodynamic resistance to viscosity, allowing for a simple linear calibration. The stand-alone viscometer structures have a characteristic size of a few tens of microns and only require a very basic external instrumentation in the form of microscopic imaging at moderate framerates (~ 100 fps). Thus, our results point to a practical and simple to use ultra-low volume viscometer that can be integrated into lab-on-a-chip devices.
Collapse
Affiliation(s)
- Gaszton Vizsnyiczai
- HUN-REN Biological Research Centre, Szeged, Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
- Department of Biotechnology, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Jana Kubacková
- Department of Biophysics, Institute of Experimental Physics SAS, Watsonova 47, 040 01, Košice, Slovak Republic
| | - Gergely T Iványi
- HUN-REN Biological Research Centre, Szeged, Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, 6720, Hungary
| | - Cyril Slabý
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54, Košice, Slovak Republic
| | - Denis Horváth
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 041 54, Košice, Slovak Republic
| | - Andrej Hovan
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54, Košice, Slovak Republic
| | - Alena Strejčková
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - Zoltán Tomori
- Department of Biophysics, Institute of Experimental Physics SAS, Watsonova 47, 040 01, Košice, Slovak Republic
| | - Lóránd Kelemen
- HUN-REN Biological Research Centre, Szeged, Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary.
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54, Košice, Slovak Republic.
| |
Collapse
|
2
|
Rose M, Manikandan SK. Role of interactions in nonequilibrium transformations. Phys Rev E 2024; 109:044136. [PMID: 38755940 DOI: 10.1103/physreve.109.044136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
For arbitrary nonequilibrium transformations in complex systems, we show that the distance between the current state and a target state can be decomposed into two terms: one corresponding to an independent estimate of the distance, and another corresponding to interactions, quantified using the relative mutual information between the variables. This decomposition is a special case of a more general decomposition involving successive orders of correlation or interactions among the degrees of freedom of the system. To illustrate its practical significance, we study the thermal relaxation of two interacting, optically trapped colloidal particles, where increasing pairwise interaction strength is shown to prolong the longevity of the time-dependent nonequilibrium state. Additionally, we study a system with both pairwise and triplet interactions, where our approach identifies their distinct contributions to the transformation. In more general setups where it is possible to control the strength of different orders of interactions, our findings provide a way to disentangle their effects and identify interactions that facilitate the transformation.
Collapse
Affiliation(s)
- Maria Rose
- School of Pure and Applied Physics, Mahatma Gandhi University, 686560 Kottayam, India
| | - Sreekanth K Manikandan
- NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden and Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
3
|
Multi-frequency passive and active microrheology with optical tweezers. Sci Rep 2021; 11:13917. [PMID: 34230533 PMCID: PMC8260820 DOI: 10.1038/s41598-021-93130-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
Optical tweezers have attracted significant attention for microrheological applications, due to the possibility of investigating viscoelastic properties in vivo which are strongly related to the health status and development of biological specimens. In order to use optical tweezers as a microrheological tool, an exact force calibration in the complex system under investigation is required. One of the most promising techniques for optical tweezers calibration in a viscoelastic medium is the so-called active–passive calibration, which allows determining both the trap stiffness and microrheological properties of the medium with the least a-priori knowledge in comparison to the other methods. In this manuscript, we develop an optimization of the active–passive calibration technique performed with a sample stage driving, whose implementation is more straightforward with respect to standard laser driving where two different laser beams are required. We performed microrheological measurements over a broad frequency range in a few seconds implementing an accurate multi-frequency driving of the sample stage. The optical tweezers-based microrheometer was first validated by measuring water, and then exemplarily applied to more viscous medium and subsequently to a viscoelastic solution of methylcellulose in water. The described method paves the way to microrheological precision metrology in biological samples with high temporal- and spatial-resolution allowing for investigation of even short time-scale phenomena.
Collapse
|
4
|
Paul S, Narinder N, Banerjee A, Nayak KR, Steindl J, Bechinger C. Bayesian inference of the viscoelastic properties of a Jeffrey's fluid using optical tweezers. Sci Rep 2021; 11:2023. [PMID: 33479292 PMCID: PMC7820279 DOI: 10.1038/s41598-021-81094-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/29/2020] [Indexed: 01/29/2023] Open
Abstract
Bayesian inference is a conscientious statistical method which is successfully used in many branches of physics and engineering. Compared to conventional approaches, it makes highly efficient use of information hidden in a measured quantity by predicting the distribution of future data points based on posterior information. Here we apply this method to determine the stress-relaxation time and the solvent and polymer contributions to the frequency dependent viscosity of a viscoelastic Jeffrey's fluid by the analysis of the measured trajectory of an optically trapped Brownian particle. When comparing the results to those obtained from the auto-correlation function, mean-squared displacement or the power spectrum, we find Bayesian inference to be much more accurate and less affected by systematic errors.
Collapse
Affiliation(s)
- Shuvojit Paul
- grid.9811.10000 0001 0658 7699Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - N Narinder
- grid.9811.10000 0001 0658 7699Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Ayan Banerjee
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Kolkata, India
| | - K Rajesh Nayak
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Kolkata, India
| | - Jakob Steindl
- grid.9811.10000 0001 0658 7699Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Clemens Bechinger
- grid.9811.10000 0001 0658 7699Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
5
|
Paul S, Kundu A, Banerjee A. Single-shot phase-sensitive wideband active microrheology of viscoelastic fluids using pulse-scanned optical tweezers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:504001. [PMID: 31315094 DOI: 10.1088/1361-648x/ab32f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a fast phase sensitive active microrheology technique exploring the phase response of a microscopic probe particle trapped in a linear viscoelastic fluid using optical tweezers under an external perturbation. Thus, we experimentally determine the cumulative response of the probe to an entire repertoire of sinusoidal excitations simultaneously by applying a spatial square pulse as an excitation to the trapped probe. The square pulse naturally contains the fundamental sinusoidal frequency component and higher odd harmonics, so that we measure the phase response of the probe over a wide frequency band in a single shot, with the band being tunable over the spectrum by choosing suitable experimental parameters. We then determine the responses to individual harmonics using a lock-in algorithm, and compare the phase shifts to those obtained theoretically by solving the equation of motion of the probe particle confined in a harmonic potential in the fluid in the presence of a sinusoidal perturbation. We go on to relate the phase response of the probe to the complex shear modulus [Formula: see text], and proceed to verify our technique in a mixture of polyacrylamide and water, which we compare with known values in literature and obtain very good agreement. Our method increases the robustness of active microrheology in general and ensures that any drifts in time are almost entirely ruled out from the data, with the added advantage of high speed and ease of use.
Collapse
Affiliation(s)
- Shuvojit Paul
- Indian Institute of Science Education and Research, Kolkata, India
| | | | | |
Collapse
|
6
|
Paul S, Kumar R, Banerjee A. A quantitative analysis of memory effects in the viscously coupled dynamics of optically trapped Brownian particles. SOFT MATTER 2019; 15:8976-8981. [PMID: 31681925 DOI: 10.1039/c9sm01058k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We provide a quantitative description of the memory effects existing in the apparently random Markovian dynamics of a pair of optically trapped colloidal microparticles in water. The particles are trapped in very close proximity to each other such that the resultant hydrodynamic interactions lead to non-Markovian signatures manifested by the double exponential auto-correlation function for the Brownian motion of each particle. In connection with the memory effects, we quantify the storage of energy in terms of various system parameters and demonstrate that a pair of Markovian particles - confined in individual optical traps in a viscous fluid - can be described in the framework of a single Brownian particle in a viscoelastic medium. We define and quantify the equivalent storage and loss moduli of the two-particle system, and show experimentally that the memory effects are maximized at a certain trap stiffness ratio, and reduce with increasing particle separation. The technique can be generally used to determine the effective viscoelastic parameters of any such fluid-particle systems, and can thus help understand the interactions between active particles mediated by simple or complex fluids.
Collapse
Affiliation(s)
- Shuvojit Paul
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, 741246, India.
| | - Randhir Kumar
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, 741246, India.
| | - Ayan Banerjee
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, 741246, India.
| |
Collapse
|
7
|
Paul S. Dynamics of hydrodynamically coupled Brownian harmonic oscillators in a Maxwell fluid. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:122. [PMID: 31506736 DOI: 10.1140/epje/i2019-11890-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
It has been shown recently that the coupled dynamics of micro-particles in a viscous fluid has many interesting aspects including motional resonance which can be used to perform two-point micro-rheology. However, it is expected that this phenomenon in a viscoelastic fluid is much more interesting due to the presence of the additional frequency-dependent elasticity of the medium. Thus, a theory describing the equilibrium dynamics of two hydrodynamically coupled Brownian harmonic oscillators in a viscoelastic Maxwell fluid has been derived which appears with new and impressive characteristics. Initially, the response functions have been calculated and then the fluctuation-dissipation theorem has been used to calculate the correlation functions between the coloured noises present on the concerned particles placed in a Maxwell fluid due to the thermal motions of the fluid molecules. These correlation functions appear to be in a linear relationship with the delta-correlated noises in a viscous fluid. Consequently, this reduces the statistical description of a simple viscoelastic fluid to the statistical representation for an extended dynamical system subjected to delta-correlated random forces. Thereupon, the auto and cross-correlation functions in the time domain and frequency domain and the mean-square displacement functions of the particles have been calculated which are perfectly consistent with their corresponding established forms in a viscous fluid and emerge with exceptional features.
Collapse
Affiliation(s)
- Shuvojit Paul
- Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.
| |
Collapse
|
8
|
Robertson-Anderson RM. Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications. ACS Macro Lett 2018; 7:968-975. [PMID: 35650960 DOI: 10.1021/acsmacrolett.8b00498] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single molecules out to near macroscopic scales. Unlike passive microrheology methods, which use diffusing microspheres to extract rheological properties, optical tweezers can probe the nonlinear viscoelastic response, and measure the space- and time-dependent rheological properties of heterogeneous, nonequilibrium materials. In this Viewpoint, I describe the basic principles underlying optical tweezers microrheology, the instrumentation and material requirements, and key applications to widely studied soft biological materials. I also describe several sophisticated approaches that include coupling optical tweezers to fluorescence microscopy and microfluidics. The described techniques can robustly characterize noncontinuum mechanics, nonlinear mechanical responses, strain-field heterogeneities, stress propagation, force relaxation dynamics, and time-dependent mechanics of active materials.
Collapse
Affiliation(s)
- Rae M. Robertson-Anderson
- University of San Diego, Physics and Biophysics Department, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|