Zaghoo M, Boehly TR, Rygg JR, Celliers PM, Hu SX, Collins GW. Breakdown of Fermi Degeneracy in the Simplest Liquid Metal.
PHYSICAL REVIEW LETTERS 2019;
122:085001. [PMID:
30932616 DOI:
10.1103/physrevlett.122.085001]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/02/2019] [Indexed: 06/09/2023]
Abstract
We are reporting the observation of the breakdown of electrons' degeneracy and emergence of classical statistics in the simplest element: metallic deuterium. We have studied the optical reflectance, shock velocity, and temperature of dynamically compressed liquid deuterium up to its Fermi temperature T_{F}. Above the insulator-metal transition, the optical reflectance shows the distinctive temperature-independent resistivity saturation, which is prescribed by Mott's minimum metallic limit, in agreement with previous experiments. At T>0.4 T_{F}, however, the reflectance of metallic deuterium starts to rise with a temperature-dependent slope, consistent with the breakdown of the Fermi surface. The experimentally inferred electron-ion collisional time in this region exhibits the characteristic temperature dependence expected for a classical Landau-Spitzer plasma. Our observation of electron degeneracy lifting extends studies of degeneracy to new fermionic species-electron Fermi systems-and offers an invaluable benchmark for quantum statistical models of Coulomb systems over a wide range of temperatures relevant to dense astrophysical objects and ignition physics.
Collapse