Wang L, Tao S, Meng X, Zhang K, Lu G. Discrete effects on boundary conditions of the lattice Boltzmann method for fluid flows with curved no-slip walls.
Phys Rev E 2020;
101:063307. [PMID:
32688558 DOI:
10.1103/physreve.101.063307]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/20/2020] [Indexed: 11/07/2022]
Abstract
The lattice Boltzmann method (LBM) has been formulated as a powerful numerical tool to simulate incompressible fluid flows. However, it is still a critical issue for the LBM to overcome the discrete effects on boundary conditions successfully for curved no-slip walls. In this paper, we focus on the discrete effects of curved boundary conditions within the framework of the multiple-relaxation-time (MRT) model. We analyze in detail a single-node curved boundary condition [Zhao et al., Multiscale Model. Simul. 17, 854 (2019)10.1137/18M1201986] for predicting the Poiseuille flow and derive the numerical slip at the boundary dependent on a free parameter as well as the distance ratio and the relaxation times. An approach by virtue of the free parameter is then proposed to eliminate the slip velocity while with uniform relaxation parameters. The theoretical analysis also indicates that for previous curved boundary schemes only with the distance ratio and the halfway bounce-back (HBB) boundary scheme, the numerical slip cannot be removed with uniform relaxation times virtually. We further carried out some simulations to validate our theoretical derivations, and the numerical results for the case of straight and curved boundaries confirm our theoretical analysis. Finally, for fluid flows with curved boundary geometries, resorting to more degrees of freedom from the boundary scheme may have more potential to eliminate the discrete effect at the boundary with uniform relaxation times.
Collapse