Manna SS, Ziff RM. Bond percolation between k separated points on a square lattice.
Phys Rev E 2020;
101:062143. [PMID:
32688479 DOI:
10.1103/physreve.101.062143]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/29/2020] [Indexed: 11/07/2022]
Abstract
We consider a percolation process in which k points separated by a distance proportional the system size L simultaneously connect together (k>1), or a single point at the center of a system connects to the boundary (k=1), through adjacent connected points of a single cluster. These processes yield new thresholds p[over ¯]_{ck} defined as the average value of p at which the desired connections first occur. These thresholds not sharp, as the distribution of values of p_{ck} for individual samples remains broad in the limit of L→∞. We study p[over ¯]_{ck} for bond percolation on the square lattice and find that p[over ¯]_{ck} are above the normal percolation threshold p_{c}=1/2 and represent specific supercritical states. The p[over ¯]_{ck} can be related to integrals over powers of the function P_{∞}(p) equal to the probability a point is connected to the infinite cluster; we find numerically from both direct simulations and from measurements of P_{∞}(p) on L×L systems that for L→∞, p[over ¯]_{c1}=0.51755(5), p[over ¯]_{c2}=0.53219(5), p[over ¯]_{c3}=0.54456(5), and p[over ¯]_{c4}=0.55527(5). The percolation thresholds p[over ¯]_{ck} remain the same, even when the k points are randomly selected within the lattice. We show that the finite-size corrections scale as L^{-1/ν_{k}} where ν_{k}=ν/(kβ+1), with β=5/36 and ν=4/3 being the ordinary percolation critical exponents, so that ν_{1}=48/41, ν_{2}=24/23, ν_{3}=16/17, ν_{4}=6/7, etc. We also study three-point correlations in the system and show how for p>p_{c}, the correlation ratio goes to 1 (no net correlation) as L→∞, while at p_{c} it reaches the known value of 1.022.
Collapse