1
|
Potkule JB, Kahar SP, Kumar M, Annapure US. Impact of non-thermal techniques on enzyme modifications for their applications in food. Int J Biol Macromol 2024; 275:133566. [PMID: 38960264 DOI: 10.1016/j.ijbiomac.2024.133566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The present review elaborates on the details of the enzyme, its structure, specificity, and the mechanism of action of selected enzymes as well as structural changes and loss or gain of activity after non-thermal treatments for food-based applications. Enzymes are biological catalysts found in various systems such as plants, animals, and microorganisms. Most of the enzymes have their optimum pH, temperature, and substrate or group of substrates. The conformational modification of enzymes either increases or decreases the rate of reaction at different pH, and temperature conditions. Enzymes are modified by different techniques to enhance the activity of enzymes for their commercial applications mainly due to the high cost of enzymes, stability, and difficulties that occur during the use of enzymes in different conditions. On the opposite, enzyme inactivation provides its application to extend the shelf life of fruits and vegetables by denaturation and partial inactivation of enzymes. Hence, the activation and inactivation of enzymes are studied by non-thermal techniques in both the model and the food system. The highly reactive species generated during non-thermal techniques cause chemical and structural modification. The enzyme modifications depend on the type and source of the enzyme, type of technique, and the parameters used.
Collapse
Affiliation(s)
- Jayashree B Potkule
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Suraj P Kahar
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai, India
| | - Uday S Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India; Institute of Chemical Technology, Marathwada Campus, Jalna, India.
| |
Collapse
|
2
|
Jiao X, Chen W, Fan D. Behind the Veil: A multidisciplinary discussion on protein–microwave interactions. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Effect of processing technologies on the digestibility of egg proteins. Compr Rev Food Sci Food Saf 2021; 20:4703-4738. [PMID: 34355496 DOI: 10.1111/1541-4337.12805] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Egg and egg products are a rich source of highly bioavailable animal proteins. Several processing technologies can affect the structural and functional properties of these proteins differently and can influence their fate inside the gastrointestinal tract. The present review examines some of the processing technologies for improving egg protein digestibility and discusses how different processing conditions affect the digestibility of egg proteins under gastrointestinal digestion environments. To provide up-to-date information, most of the studies included in this review have been published in the last 5 years on different aspects of egg protein digestibility. Digestibility of egg proteins can be improved by employing some processing technologies that are able to improve the susceptibility of egg proteins to gastrointestinal proteases. Processing technologies, such as pulsed electric field, high-pressure, and ultrasound, can induce conformational and microstructural changes that lead to unfolding of the polypeptides and expose active sites for further interactions. These changes can enhance the accessibility of digestive proteases to cleavage sites. Some of these technologies may inactivate some egg proteins that are enzyme inhibitors, such as trypsin inhibitors. The underlying mechanisms of how different technologies mediate the egg protein digestibility have been discussed in detail. The proteolysis patterns and digestibility of the processed egg proteins are not always predictable and depends on the processing conditions. Empirical input is required to tailor the optimization of processing conditions for favorable effects on protein digestibility.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
4
|
Singh AK, Burada PS, Roy A. Biomolecular response to hour-long ultralow field microwave radiation: An effective coarse-grained model simulation. Phys Rev E 2021; 103:042416. [PMID: 34005990 DOI: 10.1103/physreve.103.042416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Various electronic devices, which we commonly use, radiate microwaves. Such external perturbation influences the functionality of biomolecules. In an ultralow field, the cumulative response of a molecule is expected only over a time scale of hours. To study the structural dynamics of biomolecules over hours, we adopt a simple methodology for constructing the coarse-grained structure of the protein molecule and solve the Langevin equation under different working potentials. In this approach, each amino acid residue of a biomolecule is mapped onto a number of beads, a few for the backbone, and few for the side chain, depending on the complexity of its chemical structure. We choose the force field in such a way that the dynamics of the protein molecule in the presence of ultralow radiation field of microvolt/nm could be followed over the time frame of 2 h. We apply the model to describe a biomolecule, hen egg white lysozyme, and simulate its structural evolution under ultralow strength electromagnetic radiation. The simulation revealed the finer structural details, like the extent of exposure of bioactive residues and the state of the secondary structures of the molecule, further confirmed from spectroscopic measurements [details are available in Phys. Rev. E 97, 052416 (2018)10.1103/PhysRevE.97.052416 and briefly described here]. Though tested for a specific system, the model is quite general. We believe that it harnesses the potential in studying the structural dynamics of any biopolymer under external perturbation over an extended time scale.
Collapse
Affiliation(s)
- Anang Kumar Singh
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - P S Burada
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Anushree Roy
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
5
|
Chen X, Deng X, Han X, Liang Y, Meng Z, Liu R, Su W, Zhu H, Fu T. Inhibition of Lysozyme Amyloid Fibrillation by Silybin Diastereoisomers: The Effects of Stereochemistry. ACS OMEGA 2021; 6:3307-3318. [PMID: 33553948 PMCID: PMC7860231 DOI: 10.1021/acsomega.0c05788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/08/2021] [Indexed: 05/24/2023]
Abstract
Silybin is a flavonoid lignin compound consisting of two diastereomers with nearly equal molar ratios. It has been reported that silybin can effectively inhibit the aggregation of amyloid protein, but the difference between the two silybin diastereomers has been rarely studied. In this work, the inhibitory ability of silybin to hen egg-white lysozyme (HEWL) was demonstrated, and the difference of kinetic parameters of two diastereomers was analyzed. Fluorescence quenching titration was utilized to analyze the binding differences to native HEWL between the diastereomers, and transmission electron microscopy (TEM) was utilized to analyze the characteristics of the surface of various samples. The differences between hydrophobicity and the secondary structure among several HEWL samples were measured by the 8-anilino-1-naphthalene sulfonic (ANS) acid fluorescence probe, Raman spectra, and far-UV circular dichroism. Moreover, the differences in the binding energy of these two diastereomers with HEWL were analyzed by molecular docking. Also, we have investigated the effect of silybin diastereomers on HEWL fibril-induced cytotoxicity in SH-SY5Y cells. Results show that silybin has a certain inhibitory effect on the HEWL fibrillogenesis process, while silybin B (SB) has a more significant inhibitory effect than silybin A (SA), especially at high concentrations. This work provides some insights into the screening of amyloid inhibitors from complicated natural products and indicates that SB has the prospect of further development as an amyloid inhibitor.
Collapse
Affiliation(s)
- Xuanyu Chen
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Xiaomin Deng
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Xingxing Han
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Yinmei Liang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Zhiping Meng
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Rui Liu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Wenqiang Su
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Huaxu Zhu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
- Separation
Engineering of Chinese Traditional Medicine Compound, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingming Fu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
- Separation
Engineering of Chinese Traditional Medicine Compound, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
|
7
|
Food protein network formation and gelation induced by conductive or microwave heating: A focus on hen egg white. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Afraz MT, Khan MR, Roobab U, Noranizan MA, Tiwari BK, Rashid MT, Inam‐ur‐Raheem M, Hashemi SMB, Aadil RM. Impact of novel processing techniques on the functional properties of egg products and derivatives: A review. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muhammad Talha Afraz
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Mohd Adzahan Noranizan
- Department of Food Technology Faculty of Food Science and Technology, Universiti Putra Malaysia Serdang Malaysia
| | - Brijesh K. Tiwari
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| | | | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
9
|
Ma X, Liang R, Xing Q, Lozano‐Ojalvo D. Can food processing produce hypoallergenic egg? J Food Sci 2020; 85:2635-2644. [DOI: 10.1111/1750-3841.15360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Xiaojuan Ma
- School of Public Health Zunyi Medical University Zunyi 563000 China
| | - Rui Liang
- School of Public Health Zunyi Medical University Zunyi 563000 China
| | - Qianlu Xing
- Department of Pediatrics The Second Affiliated Hospital of Zunyi Medical University Zunyi 563000 China
| | - Daniel Lozano‐Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CSIC‐UAM) Madrid 28049 Spain
| |
Collapse
|
10
|
Restriction of microwave-induced amyloid fibrillar growth by gold nanoparticles. Int J Biol Macromol 2020; 151:212-219. [DOI: 10.1016/j.ijbiomac.2020.02.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
|
11
|
Cui L, Wang S, Zhang J, Wang M, Gao Y, Bai L, Zhang H, Ma G, Ba X. Effect of curcumin derivatives on hen egg white lysozyme amyloid fibrillation and their interaction study by spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117365. [PMID: 31323497 DOI: 10.1016/j.saa.2019.117365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/15/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Two novel Boc-L-isoleucine-functionalized curcumin derivatives have been synthesized and characterized, which exhibited enhanced solubility in water compared with the natural curcumin. The solubility could reach 2.12mg/mL for the monosubstituted compound and 3.05mg/mL for the disubstituted compound, respectively. Their anti-amyloidogenic capacity on the model protein, hen egg white lysozyme (HEWL), was examined in aqueous solution. ThT fluorescence assay showed that the operation concentration was only 0.5mM when the inhibition ratio was above 70%. Meanwhile, the inhibitory capacity of monosubstituted curcumin derivative on the formation of HEWL amyloid fibrils was found to be superior to that of disubstituted derivative, suggesting that the phenolic hydroxyl group might contribute to the anti-amyloidogenic activity. Interaction study showed that both curcumin derivatives could bind with HEWL near tryptophan residues and form new ground-state complex before HEWL self-assemblies into amyloid fibrils and thus inhibits the formation of amyloid fibrils. Both of the two cucumin derivatives have displayed low cytotoxicity with HeLa cell.
Collapse
Affiliation(s)
- Liangliang Cui
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Sujuan Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China.
| | - Jian Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Mengna Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yan Gao
- Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Libin Bai
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Hailei Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Gang Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Affiliated Hospital of Hebei University, Baoding 071000, PR China.
| |
Collapse
|
12
|
Zhang R, Zhang N, Mohri M, Wu L, Eckert T, Krylov VB, Antosova A, Ponikova S, Bednarikova Z, Markart P, Günther A, Norden B, Billeter M, Schauer R, Scheidig AJ, Ratha BN, Bhunia A, Hesse K, Enani MA, Steinmeyer J, Petridis AK, Kozar T, Gazova Z, Nifantiev NE, Siebert HC. Nanomedical Relevance of the Intermolecular Interaction Dynamics-Examples from Lysozymes and Insulins. ACS OMEGA 2019; 4:4206-4220. [PMID: 30847433 PMCID: PMC6398350 DOI: 10.1021/acsomega.8b02471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 06/01/2023]
Abstract
Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive. The knowledge of the intra- and intermolecular interaction profiles has cardinal importance for the design of encapsulation protocols. We have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and production with insulin or lysozyme-related protein encapsulation.
Collapse
Affiliation(s)
- Ruiyan Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ning Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
| | - Marzieh Mohri
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Lisha Wu
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Thomas Eckert
- Department
of Chemistry and Biology, University of
Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- Institut
für Veterinärphysiolgie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Vadim B. Krylov
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Andrea Antosova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Slavomira Ponikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Philipp Markart
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
- Pneumology,
Heart-Thorax-Center Fulda, Pacelliallee 4, 36043 Fulda, Germany
| | - Andreas Günther
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
| | - Bengt Norden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Martin Billeter
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 40530 Gothenburg, Sweden
| | - Roland Schauer
- Institute
of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Axel J. Scheidig
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Bhisma N. Ratha
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Anirban Bhunia
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Karsten Hesse
- Tierarztpraxis
Dr. Karsten Hesse, Rathausstraße
16, 35460 Stauffenberg, Germany
| | - Mushira Abdelaziz Enani
- Infectious
Diseases Division, Department of Medicine, King Fahad Medical City, P.O. Box 59046, 11525 Riyadh, Kingdom of Saudi
Arabia
| | - Jürgen Steinmeyer
- Laboratory
for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University, Paul-Meimberg-Str. 3, D-35392 Giessen, Germany
| | - Athanasios K. Petridis
- Neurochirurgische
Klinik, Universität Düsseldorf, Geb. 11.54, Moorenstraße 5, 40255 Düsseldorf, Germany
| | - Tibor Kozar
- Center
for Interdisciplinary Biosciences, TIP-UPJS, Jesenna 5, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Nikolay E. Nifantiev
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Hans-Christian Siebert
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|