1
|
Kobayashi T, Jung G, Matsuoka Y, Nakayama Y, Molina JJ, Yamamoto R. Direct numerical simulations of a microswimmer in a viscoelastic fluid. SOFT MATTER 2023; 19:7109-7121. [PMID: 37694444 DOI: 10.1039/d3sm00600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This study presents the application of the smoothed profile (SP) method to perform direct numerical simulations for the motion of both passive and active "squirming" particles in Newtonian and viscoelastic fluids. We found that fluid elasticity has a significant impact on both the transient behavior and the steady-state velocity of the particles. Specifically, we observe that the swirling flow generated by the squirmer's surface velocity significantly enhances their swimming speed as the Weissenberg number increases, regardless of the swimming type. Furthermore, we find that pushers outperform pullers in Oldroyd-B fluids, suggesting that the speed of a squirmer depends on the swimmer type. To understand the physical origin of the phenomenon of swirling flow enhancing the swimming speed, we investigate the velocity field and polymer conformation around non-swirling and swirling neutral squirmers in viscoelastic fluids. Our investigation reveals that the velocity field around the neutral swirling squirmers exhibits pusher-like extensional flow characteristics, as well as an asymmetric polymer conformation distribution, which gives rise to this increased propulsion. This is confirmed by the investigation of the force on a fixed squirmer, which revealed that the polymer stress, particularly its diagonal components, plays a critical role in enhancing the swimming speed of swirling squirmers in viscoelastic fluids. Additionally, our results demonstrate that the maximum swimming speeds of swirling squirmers occur at an intermediate value of the fluid viscosity ratio for all swimmer types. These findings have important implications for understanding the behavior of particles and micro-organisms in complex fluids.
Collapse
Affiliation(s)
- Takuya Kobayashi
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Gerhard Jung
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Yuki Matsuoka
- Corporate Engineering Center, Sumitomo Bakelite Co., Ltd, Shizuoka 426-0041, Japan
| | - Yasuya Nakayama
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - John J Molina
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Ryoichi Yamamoto
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| |
Collapse
|
2
|
Pradipto, Hayakawa H. Effective viscosity and elasticity in dense suspensions under impact: Toward a modeling of walking on suspensions. Phys Rev E 2023; 108:024604. [PMID: 37723712 DOI: 10.1103/physreve.108.024604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 09/20/2023]
Abstract
The elastic response of dense suspensions under an impact is studied using coupled lattice Boltzmann method and discrete element method (LBM-DEM) and its reduced model. We succeed to extract the elastic force acting on the impactor in dense suspensions, which can exist even in the absence of percolating clusters of suspended particles. We then propose a reduced model to describe the motion of the impactor and demonstrate its relevancy through the comparison of the solution of the reduced model and that of LBM-DEM. Furthermore, we illustrate that the perturbation analysis of the reduced model captures the short-time behavior of the impactor motion quantitatively. We apply this reduced model to the impact of a foot-spring-body system on a dense suspension, which is the minimal model to realize walking on the suspension. Due to the spring force of the system and the stiffness of the suspension, the foot undergoes multiple bounces. We also study the parameter dependencies of the hopping motion and find that multiple bounces are suppressed as the spring stiffness increases.
Collapse
Affiliation(s)
- Pradipto
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Maharjan R, O'Reilly E, Postiglione T, Klimenko N, Brown E. Relation between dilation and stress fluctuations in discontinuous shear thickening suspensions. Phys Rev E 2021; 103:012603. [PMID: 33601534 DOI: 10.1103/physreve.103.012603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
We investigate dilation-induced surface deformations in a discontinuous shear thickening (DST) suspension to determine the relationship between dilation and stresses in DST. Video is taken at two observation points on the surface of the suspension in a rheometer while shear and normal stresses are measured. A roughened surface of the suspension is observed as particles poke through the liquid-air interface, an indication of dilation in a suspension. These surface roughening events are found to be intermittent and localized spatially. Shear and normal stresses also fluctuate between high- and low-stress states, and surface roughening is observed frequently in the high-stress state. On the other hand, a complete lack of surface roughening is observed when the stresses remain at low values for several seconds. Surface roughening is most prominent while the stresses grow from the low-stress state to the high-stress state, and the roughened surface tends to span the entire surface by the end of the stress growth period. Surface roughening is found only at stresses and shear rates in and above the shear thickening range. These observed relations between surface roughening and stresses confirm that dilation and stresses are coupled in the high-stress state of DST.
Collapse
Affiliation(s)
- Rijan Maharjan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Ethan O'Reilly
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Thomas Postiglione
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Nikita Klimenko
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Eric Brown
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
4
|
Krizou N, Clark AH. Power-Law Scaling of Early-Stage Forces during Granular Impact. PHYSICAL REVIEW LETTERS 2020; 124:178002. [PMID: 32412283 DOI: 10.1103/physrevlett.124.178002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
We experimentally and computationally study the early-stage forces during intruder impacts with granular beds in the regime where the impact velocity approaches the granular force propagation speed. Experiments use 2D assemblies of photoelastic disks of varying stiffness, and complimentary discrete-element simulations are performed in 2D and 3D. The peak force during the initial stages of impact and the time at which it occurs depend only on the impact speed, the intruder diameter, the stiffness of the grains, and the mass density of the grains according to power-law scaling forms that are not consistent with Poncelet models, granular shock theory, or added-mass models. The insensitivity of our results to many system details suggests that they may also apply to impacts into similar materials like foams and emulsions.
Collapse
Affiliation(s)
- Nasser Krizou
- Department of Physics, Naval Postgraduate School, Monterey, California 93943, USA
| | - Abram H Clark
- Department of Physics, Naval Postgraduate School, Monterey, California 93943, USA
| |
Collapse
|
5
|
Maharjan R, Brown E. Effective packing fraction for better resolution near the critical point of shear thickening suspensions. Phys Rev E 2019; 99:042604. [PMID: 31108706 DOI: 10.1103/physreve.99.042604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 06/09/2023]
Abstract
We present a technique for obtaining an effective packing fraction for discontinuous shear thickening suspensions near a critical point. It uses a measurable quantity that diverges at the critical point-in this case the inverse of the shear rate γ[over ̇]_{c}^{-1} at the onset of discontinuous shear thickening-as a proxy for packing fraction ϕ. We obtain an effective packing fraction for cornstarch and water by fitting γ[over ̇]_{c}^{-1}(ϕ) and then invert the function to obtain ϕ_{eff}(γ[over ̇]_{c}). We further include the dependence of γ[over ̇]_{c}^{-1} on the rheometer gap d to obtain the function ϕ_{eff}(γ[over ̇]_{c},d). This effective packing fraction ϕ_{eff} has better resolution near the critical point than the raw measured packing fraction ϕ by as much as an order of magnitude. Furthermore, ϕ_{eff} normalized by the critical packing fraction ϕ_{c} can be used to compare rheology data for cornstarch and water suspensions from different laboratory environments with different temperature and humidity. This technique can be straightforwardly generalized to improve resolution in any system with a diverging quantity near a critical point.
Collapse
Affiliation(s)
- Rijan Maharjan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Eric Brown
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
6
|
Maharjan R, Mukhopadhyay S, Allen B, Storz T, Brown E. Constitutive relation for the system-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Phys Rev E 2018; 97:052602. [PMID: 29906932 DOI: 10.1103/physreve.97.052602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 06/08/2023]
Abstract
We experimentally characterize the impact response of concentrated suspensions consisting of cornstarch and water. We observe that the suspensions support a large normal stress-on the order of MPa-with a delay after the impactor hits the suspension surface. We show that neither the delay nor the magnitude of the stress can yet be explained by either standard rheological models of shear thickening in terms of steady-state viscosities, or impact models based on added mass or other inertial effects. The stress increase occurs when a dynamically jammed region of the suspension in front of the impactor propagates to the opposite boundary of the container, which can support large stresses when it spans between solid boundaries. We present a constitutive relation for impact rheology to relate the force on the impactor to its displacement. This can be described in terms of an effective modulus but only after the delay required for the dynamically jammed region to span between solid boundaries. Both the modulus and the delay are reported as a function of impact velocity, fluid height, and weight fraction. We report in a companion paper the structure of the dynamically jammed region when it spans between the impactor and the opposite boundary [Allen et al., Phys. Rev. E 97, 052603 (2018)10.1103/PhysRevE.97.052603]. In a direct follow-up paper, we show that this constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the foot of a person walking or running on cornstarch and water [Mukhopadhyay et al., Phys. Rev. E 97, 052604 (2018)10.1103/PhysRevE.97.052604].
Collapse
Affiliation(s)
- Rijan Maharjan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Shomeek Mukhopadhyay
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Benjamin Allen
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- School of Natural Sciences, University of California, Merced, California 95343, USA
| | - Tobias Storz
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Eric Brown
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- School of Natural Sciences, University of California, Merced, California 95343, USA
| |
Collapse
|